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Abstract

This thesis is a comprehensive study of the Stickelberger theorem on annihilators of class

groups of cyclotomic fields. The exposition closely follows the book of Washington [32].

The thesis is self-contained. Moreover, our perspective is to study the Stickelberger ideal

in reference to many related topics and not limit ourselves to just studying these two

theorems (Stickelberger and Iwasawa). Many natural questions are raised (not sure if for

the first time), and some positive results on them are also reported.
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Chapter 1

Introduction

The ideal class group Cl(K) of a number field K is the quotient group JK/PK , where JK is

the group of non-zero fractional ideals of the ring of integers of K, and PK is its subgroup

of principal ideals. The order h(K) of Cl(K) is finite and is called class number of K.

Let a be an ideal of K, then the ideal ah(k) is a principal ideal. For this very reason, the

class groups were introduced, though in a different language, by Kummer in his work

on Fermat’s last theorem. Explicit knowledge of the structure of class groups is hardly

understood. Very little knowledge is known even about the class number h(K), and in

fact, this was the main obstacle in the way of Kummer’s attack on Fermat’s last Theorem.

The most attractive results about the structure of the class group of number fields in the

literature are for quadratic and cyclotomic fields. Even then, the information on the class

number of cyclotomic fields is far from reasonable.

For any positive integer n we denote by ζn, a primitive n-th root of unity. Let K =Q(ζm)

be the m-th cyclotomic field, where m is a positive integer. We know that the Galois

group G = Gal(K/Q) acts on the class group Cl(K), the latter then naturally becomes a

module over the group ring Z[G] (formal Z-sums on G). Since the group structure in the

class group is usually seen as multiplication (not addition), it is natural to write “scalar”

γ ∈ Z[G] as exponents when they act on an ideal class x, not as multipliers from the left.

That is, xγ instead of γx. This extra structure of the class group (as a Z[G]-module) offers

some remedy. The Stickelberger ideal of K – as we shall see – provides one tool to convert

any ideal into a principal ideal just as the class number did in Kummer’s approach.
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For a ∈ (Z/mZ)∗, define σa ∈ G as σa : ζm 7→ ζ a
m. It is well known that the map

(Z/mZ)∗ → G

a 7→ σa

is a group isomorphism. Let p be a prime in Z[ζm] that is relatively prime to m. Then pmΘ

is a principal ideal in Q(ζm), where

Θ := ∑
a∈(Z/mZ)∗

 a

m

σ
−1
a ∈Q[G]

is the Stickelberger element of K. In other words, the ideal class of p in the ideal class

group is annihilated by mΘ. Let IS :=Z[G]∩ΘZ[G] be the Stickelberger ideal of K. Then,

more generally, we have the following celebrated result of Stickelberger.

Theorem 1.1 (Stickelberger). Let IS be the Stickelberger ideal of Q(ζm). Then IS annihi-

lates the ideal class group Clm of Q(ζm); in other words, for any γ ∈ IS and any fractional

ideal a of Q(ζm) the ideal aγ is a principal ideal.

Let a = −1, then σa sends every root of unity to its inverse; but this is the same as its

complex conjugate. That is, σa coincides with the complex conjugation, which induces

an automorphism of any normal field extension of Q inside C, and which is commonly

denoted by j. The fixed field of j inside K is denoted by K+ and coincides with the

intersection K ∩R. In fact, we have K+ = Q(cos(2π/m)). The class number h(K+) is

always a divisor of h(K) (see Lemma 4.4). The quotient h(K)/h(K+) is written h(K)−

and is known as minus part of the class number or simply the minus class number.

It turns out that in the minus part, the Stickelberger ideal not only annihilate but also gives

a very good idea of the size of the class group. We now explain what the minus part of a

Z[G]-module is.

For every Z[G]-module M, we define M+ = {x ∈ M : j · x = x} and M− = {x ∈ M :

j · x = −x}. So M+ is the kernel of multiplication by (1− j) and M− is the kernel of

multiplication by (1+ j). We call M+ the plus part of M and M− the minus part of

M. We can then look at the minus part I−S ⊂ Z[G]− of the Stickelberger ideal IS. The

following beautiful result is due to Iwasawa [12].

Theorem 1.2 (Iwasawa). Let K = Q(ζm) and G = Gal(K/Q); assume that m = pn is a

prime power. Then [Z[G]− : I−S ] = h(K)−.
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The techniques used by Iwasawa in his proof of the above theorem are based on rep-

resentations of a semi-simple algebra. There is another proof, by Skula [27], where he

constructs a special basis of I−S and obtains Iwasawa’s class number formula by calculat-

ing the determinant of the transition matrix from a certain basis of Z[G]− to this basis of

I−S . The proof presented in this thesis closely follows the beautiful exposition of Chapman

[4].

A generalization of Iwasawa’s theorem to arbitrary cyclotomic fields is due to Sinnott

(see [25]). We will discuss this in Chapter 5. In Chapter 2 we develop the necessary

background from algebra which is needed for our purposes. In Chapter 3 we study the

prime ideal factorization of certain Gauss sums and prove Theorem 1.1. Chapter 4 focuses

on the index of various ideals in the group ring Z[G] and the proof of Theorem 1.2.

Along the way, we present several natural questions related to the Stickelberger ideal. We

also report some positive results on these questions.



Chapter 2

Preliminaries

In this chapter, we briefly recall some of the properties of the characters of finite abelian

groups. Subsequently, we define two types of sum using these characters, called Gauss

and Jacobi sums.

2.1 Characters of Finite Abelian Groups

Let G be a multiplicative finite abelian group, and let K be a field with the property that

the characteristic of K does not divide #G. Denote by K the algebraic closure of K.

Definition 2.1 (K-character). Any group homomorphism χ : G → K∗ is a K-character of

G.

Let χ1 and χ2 be two K-characters of G, define their product χ1χ2(g) := χ1(g)χ2(g) for

all g ∈ G, then, under this multiplication, the set of all K-characters of G forms a group

called the character group of G and is denoted by Ĝ. The identity element of Ĝ is trivial

character defined by 1(g) = 1 for all g ∈ G, the inverse of a character χ ∈ Ĝ is χ−1

defined as χ−1(g) := χ(g)−1.

Proposition 2.2. The group of characters Ĝ is isomorphic to G. In particular, there are

exactly #G distinct characters.

Proof. We use induction on #G. First, assume that G is a cyclic group of finite order m.

The map χ 7→ χ(g) is then an isomorphism of Ĝ and the group of m-th roots of unity in

K. Since the characteristic of K does not divide m, the latter group is again cyclic of order

m. This shows that Ĝ ∼= G.

4



2.1. CHARACTERS OF FINITE ABELIAN GROUPS 5

Now, let G not be cyclic. Then it is a direct sum of two non-trivial subgroups: G =

G1⊕G2. Consider the homomorphism φ : Ĝ→ Ĝ1×Ĝ2 defined by χ 7→ (χ|G1 ,χ|G2), and

the homomorphism ϕ : Ĝ1× Ĝ2 → Ĝ, which to each pair (χ1,χ2) associates the character

χ ∈ Ĝ defined by χ(g1g2) = χ1(g1)χ2(g2). It is easy to see that the two homomorphisms

are inverses of each other. Hence Ĝ ∼= Ĝ1 ⊕ Ĝ2. Since, by induction, Ĝ1 ∼= G1 and Ĝ2 ∼=
G2, we obtain Ĝ ∼= G. ■

Proposition 2.3. Let χ be a character of G. If χ ̸= 1, then ∑g χ(g) = 0, where the sum is

over all g ∈ G. If χ = 1, the value of the sum is #G.

Proof. Since χ ̸= 1, there exists g ∈ G such that χ(g) ̸= 1. We obtain

χ(g) ∑
h∈G

χ(h) = ∑
h∈G

χ(gh) = ∑
h∈G

χ(h).

Since χ(g) ̸= 1, we must have ∑h∈G χ(h) = 0. ■

Denote by KG the K-vector space of K-valued functions on G. Let eg ∈ KG be defined as

eg(h) =

1 h = g

0 h ̸= g
,

then it is easy to see that {eg}g∈G is a linearly independent subset of KG. Furthermore,

any f ∈ KG can be written as

f = ∑
g∈G

f (g)eg,

thus {eg}g∈G is a basis of KG and the dimension of KG is #G . It is a well-known fact that

the K-characters of G form a linearly independent subset of KG. This statement is usually

attributed to E. Artin (see [2, p. 34]).

Proposition 2.4 (E. Artin). Let χ1,χ2, . . . ,χn be distinct K-characters of G. They are

linearly independent over K.

Proof. We use induction on n. The case n = 1 is trivial. Suppose n > 1. We make the

inductive hypothesis that no set of less than n distinct characters is dependent. Suppose

now that

a1χ1(g)+a2χ2(g)+ · · ·+anχn(g) = 0 (2.1)

for some coefficients ai ∈ K and every g ∈ G. We want to show that all ai are 0.
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Since χ1 ̸= χn, for some g0 ∈ G we have χ1(g0) ̸= χn(g0). Substitute g0g in place of g in

Equation (2.1):

a1χ1(g0)χ1(g)+a2χ2(g0)χ2(g)+ · · ·+anχn(g0)χn(g) = 0 (2.2)

for all g ∈ G. Now multiply Equation (2.1) by χn(g0):

a1χn(g0)χ1(g)+a2χn(g0)χ2(g)+ · · ·+anχn(g0)χn(g) = 0 (2.3)

for all g ∈ G. Subtracting Equation (2.3) from Equation (2.2), the last terms cancel:

a1(χ1(g0)−χn(g0))χ1(g)+ · · ·+an(χn−1(g0)−χn(g0))χn−1(g) = 0 (2.4)

for all g ∈ G. This is a linear dependence relation among the characters χ1,χ2, . . . ,χn−1,

so by induction, all coefficients ai(χi(g0)− χn(g0)) are 0. In particular, a1(χ1(g0)−
χn(g0)) = 0. Since χ1(g0) ̸= χn(g0) we must have a1 = 0. By arguing in a similar way

using χ2, . . . ,χn−1 in place of χ1, we obtain ai = 0 for i= 1, . . . ,n−1. Therefore, Equation

(2.1) becomes anχn(g) = 0 for all g ∈ G, so an = 0 since χn has non-zero values. ■

Proposition 2.4 along with Proposition 2.2 implies that the characters of G form a basis

of the space KG of K-valued functions on G.

Proposition 2.5. Let G be a finite abelian group and K be a field of characteristic not

dividing #G. Then the K-characters of the group G form a K-basis of the vector space

KG. In particular, the #G×#G matrix [χ(g)]
χ∈Ĝ
g∈G

is non-degenerate.

Proof. We have already given a proof of the first statement. For the second statement, we

note that if χ ∈ Ĝ, then

χ = ∑
g∈G

χ(g)eg,

thus the matrix [χ(g)]
χ∈Ĝ
g∈G

is a matrix of base change from {eg}g∈G to {χ}
χ∈Ĝ, therefore

it is non-degenerate. ■

For a character χ ∈ Ĝ, we denote by Kχ the extension of K generated by the values of χ .

More specifically, Kχ is the d-th cyclotomic extension of K, where d is the order of χ . In

particular, Kχ is a Galois extension of K.

Suppose σ ∈Gal(Kχ/K), then σ ◦χ is also a K-character of G. We say that two characters
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χ,χ ′ ∈ Ĝ are conjugates (over K) if Kχ = Kχ ′ and there exists σ ∈ Gal(Kχ/K) such that

χ ′ = σ ◦χ . It is clear that the conjugacy relation is an equivalence relation on Ĝ, and that

the equivalence class of χ ∈ Ĝ contains exactly [Kχ : K] elements. Let us denote the set

of representatives of the equivalence classes by M, then we have the following equality

∑
χ∈M

[Kχ : K] = #G.

Note 1. This conjugacy relation between the characters of G is not the same as the usual

definition of conjugate elements in a group. Throughout this thesis, we mean the above

definition of the conjugacy relation between characters of G.

2.2 Dirichlet Characters

Let n be a positive integer. A Dirichlet character modulo n is a C-character of the abelian

group (Z/nZ)∗, i.e., a multiplicative homomorphism

χ : (Z/nZ)∗ → C∗.

We call n the modulus of χ .

Example 2.1. • Let p be an odd prime, and let χ : (Z/pZ)∗ → C∗ be the Legendre

symbol modulo p, that is, χ(a) =
(

a
p

)
.

• Let i =
√
−1, and define χ : (Z/5Z)∗ → C∗ by χ(1) = 1, χ(2) = i, χ(3) = −i,

χ(4) =−1.

If χ is a Dirichlet character of modulus n and n|m, then using the natural homomorphism

ϕ : (Z/mZ)∗ → (Z/nZ)∗, we can define χ ′ = χ ◦ϕ . Now χ ′ is also a Diriclet character,

but of modulus m. In this situation, we say that χ ′ is induced by χ .

Let fχ be the minimal modulus for the Dirichlet character χ , that is, χ is not induced

by any Dirichlet character of modulus smaller than fχ . Call fχ the conductor of χ . A

Dirichlet character defined modulo its conductor is called primitive.

Example 2.2. • Let χ : (Z/12Z)∗ →C∗ be given by χ(1) = 1, χ(5) =−1, χ(7) = 1,

χ(11) = −1. Since χ(a+ 3k) = χ(a) we see that χ is induced by the character

ψ : (Z/3Z)∗ → C∗, where ψ(1) = 1, ψ(2) =−1. Furthermore, ψ is primitive. We

conclude that fχ = 3.
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• Let χ : (Z/12Z)∗ → C∗ be given by χ(1) = 1, χ(5) =−1,χ(7) =−1,χ(11) = 1.

It is easy to check that χ is primitive, whence fχ = 12.

A Dirichlet character χ also may be regarded as a function χ : Z→ C by letting

χ(a) =

χ(a mod fχ) if (a, fχ) = 1

0 if (a, fχ) ̸= 1.

We also refer to this periodic funtion on Z as a Dirichlet character, and we do not dis-

tinguish notationally between a Dirichlet character as a function on (Z/ fχZ)∗ and the

periodic function on Z associated to it.

2.3 Group Rings

Definition 2.6. Let G be a finite group and R be a commutative ring with unity. The group

ring of G over R, which we denote by R[G], is the set of all formal R-linear combinations

of the elements of G:

R[G] :=

∑
g∈G

agg : ag ∈ R

 .

We define the addition and multiplication on R[G] in the obvious way:

∑
g

agg+∑
g

bgg = ∑
g
(ag +bg)g,

∑
g

agg ·∑
g′

bg′g
′ = ∑

h∈G

 ∑
gg′=h

agbg′

h.

It is easy to see that R[G] is a commutative ring with these operations. The unity of the

group ring R[G] is the identity element e of G. This suggests the following convention:

in the group ring, we identify e and 1, where 1 is the unity of R.

In this thesis, the group G is usually abelian, and R is either the ring of integers Z or a

field.

2.3.1 The Group Ring Z[G]

Let G be a finite abelian group, then Z[G] is the group ring of G over Z. If A is an abelian

group (written multiplicatively, say) on which the group G acts, then the abelian group A
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is called a G-module. Since G acts on A, the latter naturally becomes a module over the

group ring Z[G] through the following formula∑
g∈G

agg

 · v = ∏
g∈G

(g · v)ag, v ∈ A.

If θ = ∑g∈G agg, then it is customary to write vθ instead of θ · v, so that the formula

θ1 · (θ2 ·v) = (θ1θ2) ·v translates into the identity vθ1θ2 = (vθ1)θ2 , where it is essential that

G be an abelian group.

Let E be an abelian extension of Q with the Galois group G. Then we have various G-

modules (called in this case Galois modules): the additive group E, the multiplicative

group E×, the group of units UE , the class group Cl(E), etc. In this thesis, we focus on

Cl(E) as a Galois module.

2.3.2 The Group Algebra K[G]

Let G be a finite abelian group and K be a field of characteristic not dividing #G. The

group ring K[G] is called the group algebra of G over K. It is easy to see that K[G] is the

free vector space over the field K of dimension #G. We can extend the K-characters of G

linearly to K[G]: given χ ∈ Ĝ, we define the map K[G]→ Kχ by

∑
g∈G

agg 7→ ∑
g∈G

agχ(g).

Clearly, this map is a ring homomorphism. We denote this ring homomorphism by χ , and

call it a character of K[G]. The set of all characters of K[G] will again be denoted by Ĝ.

Fix an ordering of G, say G = {g1,g2, . . . ,gn}, then x = ∑
n
i=1 aigi ∈ K[G] can be written

as a column vector:

x = [a1,a2, . . . ,an]
t .

Proposition 2.7. If x ∈ K[G] satisfies χ(x) = 0 for all χ ∈ Ĝ, then x = 0.

Proof. Let A = [χ(g)]
χ∈Ĝ
g∈G

, then Ax = [χ(x)]t
χ∈Ĝ

. Recall from Proposition 2.5 that A is not

degenerate. Thus, Ax = 0 cannot have a non-trivial solution. ■
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2.3.3 The Weight Function and the Norm Element

In this section we recall the most basic notions about the group rings. Let G be a finite

abelian group and R be a commutative ring with unity. We define weight function w :

R[G]→ R by

w

∑
g∈G

agg

= ∑
g∈G

ag.

It is easy to verify that the weight function is additive and multiplicative.

Proposition 2.8. For any x,y ∈ R[G]

w(x+ y) = w(x)+w(y), w(xy) = w(x)w(y).

Thus, the weight function is a ring homomorphism. Its kernel, consisting of elements of

weight 0 is called the augmentation ideal of the group ring R[G].

The norm element of R[G] is

N = ∑
g∈G

g.

It is obvious that xN = Nx = x for any x ∈ G. Extending this by linearity, we obtain the

following property.

Proposition 2.9. For any x ∈ R[G] we have xN = Nx = w(x)N. In particular, R[G]N =

NR[G] = RN.

The ideal RN is called the norm ideal of the group ring R[G]. If the cardinality #G is an

invertible element of R (which is, in particular, the case if R is a field of characteristic not

dividing #G) the, writing each x ∈ R[G] as x−w(x)#G−1N +w(x)#G−1N, we obtain the

following.

Proposition 2.10. Assume that #G is an invertible element of R. Then R[G] is the direct

sum of its augmentation ideal and its norm ideal.

2.3.4 Semi-smiplicity of the Group Ring

Definition 2.11. A commutative ring is semi-simple if it is isomorphic to a direct product

of finitely many fields.

It is remarkably easy to describe the ideals of a semisimple ring. Let R be a semi-simple

ring and write it as a direct product of finitely many fields: R = K1 ×K2 ×·· ·×Ks. Let
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Λ = {1,2, . . . ,s}. For λ ∈ Λ, denote by 1λ = (x1, . . . ,xs) ∈ R, such that xλ = 1 and xµ = 0

for µ ̸= λ . The following result completely describes the ideals of a semi-simple ring R.

Proposition 2.12. Let R = K1 ×K2 ×·· ·×Ks be a semi-simple ring.

1. For Λ′ ⊆ Λ, let IΛ′ consist of x = (x1, . . . ,xs) ∈ R such that xλ = 0 for all λ /∈ Λ′.

Then IΛ′ is an ideal of R. Conversely, any ideal of R is equal to IΛ′ for some Λ′ ⊆ Λ.

2. The ideal IΛ′ is principal; it is generated by the element

1Λ′ = ∑
λ∈Λ′

1λ .

The proof of the above proposition is elementary, and we omit it.

In this thesis, our goal is to study the ideals of Q[G] and C[G]. It turns out that the group

algebra K[G] is semi-simple.

Theorem 2.13 (The Abelian Maschke Theorem). Let G be a finite abelian group and

K be a field of characteristic not dividing #G. Choose a system M = {χ1,χ2, . . . ,χs} of

representatives of conjugacy classes of characters of G. Then the ring homomorphism

φ : K[G]→
s

∏
i=1

Kχi

x 7→ (χi(x)),

is an isomorphism. In particular, the ring K[G] is semi-simple.

Proof. First, note that φ is also a linear map from K[G] to ∏χ∈M Kχ and that the ring ho-

momorphism φ is an isomorphism if and only if the linear map φ is a linear isomorphism.

Let x be in the kernel of φ , that is, χ(x) = 0 for any character χ ∈ M. Since conjugate

characters vanish simultaneously at x, we obtain χ(x) = 0 for all χ ∈ Ĝ. Proposition 2.7

implies that x = 0. Hence, φ is a monomorphism. Since

s

∑
i=1

[Kχi : K] = #G,

the K-dimensions of K[G] and ∏
s
i=1 Kχi are equal. Therefore, we have an isomorphism.

■

Let I be an ideal of K[G], and Λ = {1,2, . . . ,s}. The image φ(I) of the ideal I under φ is
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an ideal of ∏
s
i=1 Kχi . From Proposition 2.12, we have

φ(I) = {(xi) ∈
s

∏
i=1

Kχi : xi = 0 ∀ i /∈ Λ
′}

for some Λ′ ⊆ Λ. Thus,

I = {x ∈ K[G] : χi(x) = 0 ∀ i /∈ Λ
′},

that is, I is the common kernel of characters {χi}Λ′ . The ideals of K[G] can be character-

ized as common kernels of characters from the set M: for a subset N of M let IN be the

common kernel of characters from the complement M \N. Then IN is an ideal of K[G],

and any ideal of K[G] is equal to IN for some N ⊆ M. The ideal IN is isomorphic, as a

K-vector space, ∏χ∈N Kχ . Thus,

dimK IN = ∑
χ∈N

[Kχ : K]. (2.5)

Furthermore, if α ∈ K[G] then the principal ideal (α) is equal to IN , where N consists of

characters χ ∈ M non-vanishing at α . Therefore,

dimK(α) = ∑
χ(α )̸=0

[Kχ : K]. (2.6)

Since conjugate characters vanish at α simultaneously and since for every χ there are

exactly [Kχ : K] characters conjugate to χ , the above equality becomes

dimK(α) = ∑
χ(α )̸=0

χ∈Ĝ

1. (2.7)

That is, the K-dimension of the principal ideal (α) is equal to the number of characters

χ ∈ Ĝ non-vanishing at α .

2.4 Idempotents

Retaining the notation of previous sections, we now give an explicit K-basis of IN as a

K-vector space and an explicit generator of IN as a principal ideal. We achieve this under



2.4. IDEMPOTENTS 13

an additional assumption,

K contains #G-roots of unity. (2.8)

Assumption (2.8) implies that Kχ =K for all characters χ , or equivalently, every character

is conjugate only to itself. Thus, the isomorphism in Theorem 2.13 gives

φ : K[G]→ K#G.

Definition 2.14. Let χ be a character of G, set

εχ :=
1

#G ∑
g∈G

χ(g)g−1 ∈ K[G],

called the idempotent of χ .

The idempotents of characters have many remarkable properties; here we list a few of

them.

Proposition 2.15. 1. For any characters χ and χ ′ we have

χ
′(εχ) =

1 if χ = χ ′,

0 if χ ̸= χ ′.

2. For any x ∈ K[G] we have xεχ = χ(x)εχ .

3. For any character χ we have ε2
χ = εχ .

4. We have

∑
χ

εχ = 1.

Proof. We have

χ
′(εχ) =

1

#G ∑
g∈G

χ(g)χ ′(g)−1 =

1 if χ = χ ′,

0 if χ ̸= χ ′.

We get the last equality by applying Theorem 2.3 to χ(χ ′)−1.

Let x ∈ G, then
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xεχ =
1

#G ∑
g∈G

χ(g)xg−1

= χ(x)
1

#G ∑
g∈G

χ(gx−1)(gx−1)−1

= χ(x)εχ

by linearity, it extends to x ∈ K[G], which proves Part 2. Parts 1 and 2 immediately imply

Part 3. For Part 4, we have

∑
χ

εχ =
1

#G ∑
g∈G

g−1
∑
χ

χ(g),

by Theorem 2.3 the inner sum vanishes except if g = 1, in which case it equals #G, which

proves Part 4. ■

Example 2.3. The idempotent of the trivial character is 1
#GN, where N = ∑g∈G g is the

norm element of G.

Proposition 2.16. B = {εχ}χ is a K-basis of K[G]. Furthermore, BN = {εχ}χ∈N is a

K-basis of IN .

Proof. Let α ∈ K[G], then

∑
χ

χ(α)εχ = ∑
χ

αεχ = α ∑
χ

εχ = α.

Moreover if ∑χ aχεχ = 0, then using Part 1 of Proposition 2.15 we have χ ′(∑χ aχεχ) =

aχ ′ = 0, which implies that {εχ}χ is linearly independent. Thus, B is a basis for K[G].

Recall, IN = {x ∈ K[G] : χ(x) = 0 ∀ χ ∈ Ĝ\N}. Let α = ∑
χ∈Ĝ aχεχ ∈ IN , since χ(α) = 0

for all χ ∈ Ĝ \N, we have aχ = 0 for all χ ∈ Ĝ \N. Again, using Part 1 of Proposition

2.15 we conclude that {εχ}χ∈N is linearly independent. ■

2.5 Gauss Sums

In this section, by a character of a finite abelian group G we mean a C-character, that is,

a homomorphism G → C∗.
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Let p be a prime and q = pn for some positive integer n. Let Fq be the finite field with q

elements, so that Fq is a finite extension of Fp (finite field with p elements) of degree n.

Lemma 2.17. The trace map Tr : Fq → Fp is a surjective homomorphism.

Proof. We know that Gal(Fq/Fp) is a finite cyclic group of order n generated by the

Frobenius element σ : α 7→ α p. Thus, the trace of x ∈ Fq is

Tr(x) = x+σ(x)+ · · ·+σ
n−1(x) = x+ xp + · · ·+ xpn−1

,

this polynomial is of degree pn−1 < pn = |Fq|, hence there is α ∈ Fq such that Tr(α) ̸= 0,

which implies that Tr is surjective. ■

Let ζp be a primitive p-th root of unity. We use the trace map to define an additive

character ψ : Fq → C∗ as ψ(a) = ζ
Tr(a)
p . Since Tr is surjective, there exists a ∈ Fq such

that ψ(a) ̸= 1, thus ψ is a non-trivial character. Let F̂∗
q be the group of characters on F∗

q.

We extend χ ∈ F̂∗
q to Fq by defining χ(0) = 0 and the function χ : Fq → C thus obtained

will be referred as multiplicative character on Fq.

Definition 2.18. Let χ be a character on Fq. Set

g(χ) :=− ∑
a∈Fq

χ(a)ψ(a),

where the sum is over all a in Fq. The sum g(χ) is called a Gauss sum on Fq belonging

to the character χ .

Gauss sums are essential arithmetical objects; they are indispensable in analytic number

theory, algebraic number theory, arithmetic geometry, cryptography, etc. However, we

use Gauss sums merely as a tool for proving Stickelberger’s theorem. In this section, we

list all the properties of Gauss sums required for this purpose.

Proposition 2.19. Let χ be a character of G, and χ = χ−1. Then

1. g(1) = 1;

2. g(χ) = χ(−1)g(χ);

3. if χ ̸= 1, g(χ)g(χ) = χ(−1)q;

4. if χ ̸= 1, g(χ)g(χ) = q.
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Proof. Since ψ is non-trivial, −g(1) = ∑a∈Fq ψ(a) = 0 (by Proposition 2.3). To prove

(2), we observe that ψ(a) = ψ(−a), so that

χ(−1)g(χ) =−∑χ(−1)χ(a)ψ(−a)

=−∑χ(−1)χ(a)ψ(−a)

=−∑χ(−a)ψ(−a)

= g(χ).

Notice that (3) follows from (2) and (4). To prove (4) consider the following:

g(χ)g(χ) = ∑
a,b̸=0

χ(a)χ(b)ψ(a)ψ(−b)

= ∑
a,b̸=0

χ(ab−1)ψ(a−b)

= ∑
b,c̸=0

χ(c)ψ(b(c−1)).

Substituting a = bc gives

g(χ)g(χ) = ∑
b̸=0

χ(1)ψ(0)+ ∑
c̸=0,1

χ(c) ∑
b̸=0

ψ(b(c−1))

= q−1+ ∑
c̸=0,1

χ(c) ∑
b̸=0

ψ(b(c−1)).

For c ̸= 1, we have ∑b̸=0 ψ(b(c−1)) =−1, therefore,

g(χ)g(χ) = q−1+(−1)(−1) = q.

■

2.6 Multiplicative Combinations of Gauss Sums

Let χ be a character of order dividing m, then g(χ) is an algebraic integer in Q(ζp,ζm).

However, remarkably, certain simple multiplicative combinations of several Gauss sums

lies in a much smaller field.
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Definition 2.20. Let χ and λ be two multiplicative characters of Fq and set

J(χ,λ ) =− ∑
a+b=1
a,b∈Fq

χ(a)λ (b) =− ∑
a∈Fq

χ(a)λ (1−a).

The sum J(χ,λ ) is called a Jacobi sum.

Note that if χ and λ have orders dividing m then J(χ,λ ) is an algebraic integer in Q(ζm).

See Weil [34] and [35] for amazing properties of Gauss sums and Jacobi sums. Here are

some such properties:

Proposition 2.21. Let χ and λ be non-trivial characetrs. Then

1. J(1,1) = 2−q;

2. J(1,χ) = J(χ,1) = 1 if χ ̸= 1;

3. J(χ,χ) = χ(−1) if χ ̸= 1;

4. If χλ ̸= 1, then

J(χ,λ ) =
g(χ)g(λ )

g(χλ )
.

Proof. Part (1) is immediate and part (2) is an immediate consequence of Proposition 2.3.

To prove Part (3) and (4) we compute

g(χ)g(λ ) = ∑
a,b

χ(a)λ (b)ψ(a+b)

= ∑
a,b

χ(a)λ (b−a)ψ(b)

= ∑
a,b
b̸=0

χ(a)λ (b−a)ψ(b)+∑
a

χ(a)λ (−a).

If χλ ̸= 1, then the second sum vanishes (by Orthogonality relations). If χλ = 1, then it

equals χ(−1)(q−1). The first sum equals (let a = bc)

∑
b,c

b̸=0

χ(b)λ (b)χ(c)λ (1− c)ψ(b) = g(χλ )J(χ,λ ).

If χλ ̸= 1, we obtain Part (4). If χλ = 1, use Part(2) of Proposition 2.19, along with

g(1) = 1, to obatin Part (3). This completes the proof. ■
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Corollary 2.22. If χ,λ are characters of orders dividing m, then

g(χ)g(λ )

g(χλ )

is an algebraic integer in Q(ζm).

Proof. If χλ ̸=1 then use proposition 2.21(4). The other cases are also easy to check. ■

For any b coprime to m define σb ∈ Gal(Q(ζp,ζm)/Q) by

σb : ζp 7→ ζp, ζm 7→ ζ
b
m.

Proposition 2.23. Assume χm = 1. Then for any b coprime to m the number

g(χ)b−σb :=
g(χ)b

g(χ)σb

is an algebriac integer in Q(ζm). In particular, g(χ)m ∈Q(ζm).

Proof. We observe that

g(χ)σb =− ∑
a∈F

σb(χ(a))σb(ψ(a))

=− ∑
a∈F

χ(a)b
ψ(a) = g(χb).

Let τ ∈ Gal(Q(ζp,ζm)/Q(ζm)) such that τ : ζp 7→ ζ c
p for some p ∤ c. Then

g(χ)τ =− ∑
a∈F

χ(a)ψ(ac)

=−χ(c)−1
∑
a∈F

χ(a)ψ(a) = χ(c)−1g(χ).

Similarly, g(χb)τ = χ(c)−bg(χb), hence

τ

g(χ)b

g(χb)

=
(g(χ)τ)b

g(χb)τ
=

χ(c)−bg(χ)b

χ(c)−bg(χb)
=

g(χ)b

g(χb)
.

Since g(χ)b

g(χb)
is an algebraic integer (from Corollary 2.22), the first claim follows. To prove
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the second claim take b = 1+m. ■

Proposition 2.24. g(χ p) = g(χ).

Proof. Let a ∈ F, and σ be the Frobenius, then

Tr(a) = a+σ(a)+ · · ·+σ
n−1(a).

Since, Tr(a) ∈ Fp, by Fermat’s little theorem we have Tr(a)p = Tr(a), but

Tr(a)p ≡ ap +σ(a)p + · · ·+σ
n−1(a)p ≡ Tr(ap) (mod p).

As a result, we have Tr(ap) = Tr(a). Finally putting everything together

g(χ p) =−∑χ(ap)ζ
Tr(a)
p =−∑χ(ap)ζ

Tr(ap)
p = g(χ).

■

2.7 Historical Remarks on Gauss and Jacobi Sums

Gauss sums over Fp were introduced by Lagrange and Vandermonde [5] for the purpose

of solving algebraic equations and for this reason they were called Lagrange resolvants

for a long time. Gauss used these sums in [8, Art. 356], and determined the sign of the

quadratic Gauss sum in [7]. The above mentioned properties of Gauss and Jacobi sums

can be found in his posthumously published [6, pg. 252]. These properties were also

known to Cauchy, Jacobi, and Eisenstein.

Stickelberger [29] studied Gauss and Jacobi sums over arbitrary finite fields – we will

discuss his results in detail in Chapter 2. In fact, Stickelberger was the first to suggest the

minus sign in the definition of Gauss sums; in [29], he writes on pg. 358:

besser noch ware es vielleicht, sowohl die gewöhnliche wie unsere allge-

meine Resolvente mit −1 zu multiplizieren.1

For more information about Gauss and Jacobi sums as well as on related sums see the

book of Lidl and Niederreiter [19], and the book of Ireland and Rosen [11].
1perhaps it would be even better if we multiplied both the usual as well as our general resolvent by −1.
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There is an analogy (first noticed by Jacobi) between Gauss and Jacobi sums on one hand,

and the Gamma and Beta functions on the other hand;

−g(χ) = ∑
a∈Fq

χ(a)ψ(a) Γ(x) =
∫

∞

0
tx−1e−tdt

−J(χ,λ ) =− ∑
a∈Fq

χ(a)λ (1−a) B(x,y) =
∫ 1

0
tx−1(1− t)y−1dt

g(χ)g(λ ) = g(χλ )J(χ,λ ) Γ(x)Γ(y) = Γ(x+ y)B(x,y)

g(χ)g(χ) = χ(−1)q Γ(x)Γ(1− x) =
π

sinπx

As we have seen earlier, the relations on the left side are valid if the occuring characters

are ̸= 1, whereas those on the right side make sense only if you stay away from the pole

x = 0 of the Γ-function.

Finally we mention that Gauss sums have been generalized in various directions: Weber

[33] and Jordan [14] considered Gauss sums in many variables, Thakur [31] defined Gauss

sums to function fields of one variable over a finite field.



Chapter 3

Stickelberger Ideal

In this chapter, we define the Stickelberger ideal of an abelian number field E and show

that it annihilates the ideal class group E. We use, in a fundamental way, the prime ideal

decomposition of Gauss sums and some additional machinery.

3.1 Notation and Setup

Let m be a positive integer that is fixed throughout this chapter (unless mentioned oth-

erwise). Let p be a rational prime relatively prime to m. Let f be the smallest positive

integer such that p f ≡ 1 (mod m). For any positive integer n we denote by ζn a primitive

n-th root of unity. Putting q = p f , we have the following diagram of the number fields

and primes.

Q(ζq−1,ζp) Pp−1
1 · · ·Pp−1

g

Q(ζq−1) q1 · · ·qg

Q p

Where the integral prime p splits into g = φ(q−1)
f many distinct prime ideals q1, . . . ,qg of

Q(ζq−1). We know that the primes qi do not split in Q(ζq−1,ζp), so let Pi be the unique

prime of Q(ζq−1,ζp) above qi.

We fix a prime q in Q(ζq−1) above p and let P be its corresponding prime in Q(ζq−1,ζp).

The inertia degree of q is f , therefore, we shall denote the residue field Z[ζq−1]/q by Fq.

We shall now define a character of F∗
q that is uniquely determined by q.

21
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Proposition 3.1. Denote by µq−1 ⊂ Z[ζq−1] the group of (q − 1)-th roots of unity in

Q(ζq−1). Then the map

u : µq−1 → F∗
q ; x 7→ x (mod q)

is a group isomorphism.

Proof. Let x,y ∈ µq−1, then

u(xy) = xy mod q= (x mod q)(y mod q) = u(x)u(y),

implies that u is a group homomorphism.

Since #µq−1 = #F∗
q = q−1, it is sufficient to show that the ker(u) is trivial. Suppose x =

ζ k
q−1 ∈ ker(u), for some 1≤ k≤ q−2. Then ζ k

q−1 ≡ 1 (mod q), equivalently, 1−ζ k
q−1 ∈ q.

We know that

∏
1≤ j≤q−2

(x−ζ
j

q−1) = 1+ x+ x2 + · · ·+ xq−2.

Substituting x = 1, we get q− 1 ∈ q. Since q = p f ∈ q, 1 = q− (q− 1) ∈ q, which is

absurd. ■

Let ωq be the inverse of u, that is, ωq := u−1, then

ωq : F∗
q → µq−1 ⊂ C,

is a unique isomorphism from F∗
q to µq−1 satisfying the following property.

ωq(x) mod q= x. (3.1)

Since ωq is a group homomorphism F∗
q to C, ωq is a character of F∗

q. We extend ωq to Fq

by defining ωq(0) = 0 and call it Teichmuller character on Fq. For our convenience, we

write Equation 3.1 as follows:

ωq(x)≡ x (mod q). (3.2)

Remark 1. It is easy to see that ωq is uniquely determined by q.

Since ωq is an isomorphism between F∗
q and µq−1, it is a character of order q−1. There-

fore, any χ ∈ F̂∗
q is of the form χ = ω−r

q for some 0 ≤ r ≤ q−2. As a result, the values
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of the Gauss sums g(χ) = g(ω−r
q ) depend only on (q,r). As mentioned above, the prime

ideal q is fixed, therefore, we omit the subscript q from ωq and write ω instead of ωq.

3.2 Prime Ideal Decomposition of Gauss Sums

We begin by proving the following congruence for Jacobi sums.

Proposition 3.2 (Jacobi Sum Congruence). Let a,b ∈ Z be such that 1 ≤ a,b < q− 1.

Then

J(ω−a,ω−b)≡

0 (mod q) if a+b ≥ q;(a+b
a

)
(mod q) otherwise.

(3.3)

We require the following lemma to prove the above congruence.

Lemma 3.3. 1. For 0 < m < q−1 we have

∑
a∈Fq

am = 0.

2. For any m ∈ Z we have

∑
a∈F∗q

am =

0 (q−1) ∤ m,

−1 (q−1) | m.

Proof. Define the following map:

ϕ :F∗
q → F∗

q

a 7→ am.

It is clear that ϕ is a group homomorphism. We know that F∗
q is cyclic, so let g be a

generator. We have,

ϕ(g) ∑
a∈F∗q

ϕ(a) = ∑
a∈F∗

q

ϕ(ga) = ∑
a∈F∗

q

ϕ(a)

Since 0 < m < q−1, ϕ(g) ̸= 1, it follows that

∑
a∈F∗q

ϕ(a) = ∑
a∈F∗q

am = 0.
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Since m ̸= 0 we have the followsing equality

∑
a∈F∗q

am = ∑
a∈Fq

am,

which proves Part (1) and Part (2) immediately follows from Part (1). ■

Proof of Proposition 3.2. For any x∈F∗
q, choose x′ ∈ µq−1 such that x′ ≡ x (mod q), then

ω(x) = x′.

Let c = q−1−b, then ω−b = ωc as the order of ω is q−1. If x ̸= 1, then we have

ω
−b(1− x) = ω

c(1− x)≡ (1− x′)c (mod q).

Therefore,

J(ω−a,ω−b) =− ∑
x∈F∗q

ω
−a(x)ω−b(1− x)

≡− ∑
x∈F∗q

(x′)−a(1− x′)c

≡− ∑
x∈F∗q

x−a(1− x)c

≡− ∑
x∈F∗q

x−a
∑

0≤ j≤c

(
c
j

)
(−1) jx j

≡− ∑
0≤ j≤c

(−1) j
(

c
j

)
∑

x∈F∗
q

x j−a (mod q).

Since j,a < q−1, j ≡ a (mod q−1) if and only if j = a. From Lemma 3.3 we have

∑
x∈F∗q

x j−a =

0 j ̸= a,

−1 j = a.

If a+b ≥ q, then a > c. Therefore, j ̸= 0 as 0 ≤ j ≤ c. Hence,

J(ω−a,ω−b)≡ 0 (mod q).

Suppose a+ b ≤ q− 1, equivalently a ≤ c. Then the sum ∑x∈F∗q x j−a vanishes except if

j = a. Therefore,

J(ω−a,ω−b)≡ (−1)a−2
(

c
a

)
(mod q).
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We have,

(
c
a

)
=

(
q−1−b

a

)
=

(q−1−b)(q−2−b) · · ·(q−a−b)

a!
(mod p)

≡ (−1)a
(b+1)(b+2) · · ·(a+b)

a!

≡ (−1)a
(

a+b
a

)
(mod p).

Since q divides p, the above congruence of the binomial coefficients also holds modulo q.

Thus,

J(ω−a,ω−b)≡ (−1)a−2
(

c
a

)
≡ (−1)2a−2

(
a+b

a

)
(mod q).

This proves our claim. ■

Remark 2. If a+ b ≥ q, then
(a+b

a

)
≡ 0 (mod p). Therefore, the second congruence is

valid in all generalities.

Definition 3.4. Let 0≤ r < q−1 be an integer and r =∑0≤i< f ri pi be its p-adic expansion,

with 0 ≤ ri ≤ p−1. Define

sp(r) := ∑
0≤i< f

ri and tp(r) := ∏
0≤i< f

ri!.

Let r ∈ Z, then there exist 0 ≤ r′ < q−1 and k ∈ Z such that r = k(q−1)+ r′. Define

s(r) := sp(r′) and t(r) := tp(r′).

Clearly, s and t are (q−1)-periodic functions on Z.

Theorem 3.5 (Stickelberger’s Congruence). For all r ∈ Z we have

g(ω−r)

πs(r)
≡

1

t(r)
(mod P), (3.4)

where π = ζp −1, and P is the unique prime ideal of Q(ζq−1,ζp) above q. Furthermore,

vP(g(ω−r)) = s(r), where vP is the P-adic evaluation of Q(ζq−1,ζp).

Proof. By periodicity we can assume that 0 ≤ r < q− 1. We prove the theorem by in-

ducting on s(r) = sp(r). If s(r) = 0, the claim is trivial because r = 0 and g(1) = 1. The
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crucial case to be proved is the case s(r) = 1, in which case r = pk for some 0 ≤ k < f

and t(r) = 1. Since g(χ p) = g(χ) (see Proposition 2.24), we have

g(ω−pk
) = g(ω−pk−1

) = · · ·= g(ω−1),

it follows that we can assume r = 1. Since ω is a nontrivial character, we have

g(ω−1) =− ∑
x∈Fq

ω
−1(x)ζ Tr(x)

p =− ∑
x∈Fq

ω
−1(x)(ζ Tr(x)

p −1),

as ∑x∈F∗q ω−1(x) = 0. The last sum has the advantage that all summands are divisible by

ζp −1. Since ζ r
p ≡ 1 (mod π) for all r ∈ Z, we have

ζ m
p −1

ζp −1
= 1+ζp + · · ·+ζ

m−1
p ≡ m (mod π).

We know that π ∈P, which implies that the above congruence also holds modulo P. This

shows that
g(ω−1)

ζp −1
≡− ∑

x∈F∗q
ω

−1(x)Tr(x) (mod P).

Now Tr(x)=∑0≤i< f xpi ∈Fp, and on the other hand, by definition, ω−1(x)≡ x−1 (mod P).

It follows that
g(ω−1)

π
≡− ∑

0≤i< f
∑

x∈F∗q
xpi−1 (mod P).

Now again by Lemma 3.3 the inner sum vanishes if 1 ≤ i < f , and it is congruent to −1

modulo p if i = 0. It follows that

g(ω−1)

ζp −1
≡ 1 (mod P),

proving the theorem when s(r) = 1.

Now let r =∑0≤i< f ri pi with 0≤ ri < p be such that s(r)> 1, and assume by induction that

the theorem is true for all r′ < q−1 with s(r′)< s(r). Again, using the fact that g(χ p) =

g(χ), we can assume that r0 ≥ 1. It follows in particular that s(r−1) = s(r)−1 ≥ 1 and

r−1 ≥ 1.
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Since the characters involved are nontrivial, by Proposition 2.21 we have

J(ω−1,ω−(r−1))g(ω−r) = g(ω−1)g(ω−(r−1)). (3.5)

Using Proposition 3.2 we know that

J(ω−1,ω−(r−1))≡
(

r
1

)
= r ≡ r0 (mod P). (3.6)

Combining equations 3.5 and 3.6 we get

r0
g(ω−r)

πs(r)
≡

g(ω−1)g(ω−(r−1))

πs(r)
(mod P). (3.7)

Since 1 ≤ r0 ≤ p−1, r0 is invertible modulo P, we can divide both sides of congruence

3.7 by r0:

g(ω−r)

πs(r)
≡

1

r0

g(ω−1)

π

g(ω−(r−1))

πs(r)−1
(mod P). (3.8)

The induction hypothesis implies that g(ω−(r−1))

πs(r−1) ≡ 1
t(r−1) (mod P) (recall that s(r−1) =

s(r)− 1), and the case r = 1 implies that g(ω−1)
π

≡ 1 (mod P). Combining this with

equation 3.8 we see that

g(ω−r)

(ζp −1)s(r)
≡

1

r0
·1 ·

1

t(r−1)
(mod P), (3.9)

since t(r) = r0t(r−1) when r0 ̸= 0. We have proved our induction hypothesis and hence

the first statement.

It is well known that pZ[ζp] = (π)p−1 and pZ[ζp(q−1] = (P1 · · ·Pg)
p−1, where Pi are the

prime ideals of Q(ζp,ζq−1) above p. We have

pZ[ζp(q−1] = (pZ[ζp])Z[ζp(q−1] = π
p−1Z[ζp(q−1] = (P1 · · ·Pg)

p−1,

where, say, P=P1. Hence πZ[ζp(q−1)] =P1 · · ·Pg, thus vP(π) = 1. We know that t(r)

is coprime to p hence is invertible modulo P, so by the Stickelberger congruence:

vP(g(ω−r)) = s(r)vP(π) = s(r).
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This proves the second statement. ■

Let q and P be as above. Let pm be the unique prime ideal in Q(ζm) below q, and Pm

be the unique prime ideal in Q(ζm,ζp) below P. Let p = (π), where π = ζp − 1, be the

unique prime ideal in Q(ζp) lying above p. The Hasse diagram for the fields and ideals

occurring in this section is displayed in the following figure:

P Q(ζq−1,ζp) P

q Q(ζq−1) Q(ζm,ζp) Pm

pm Q(ζm) Q(ζp) p

p Q p

Let d = q−1
m and r be any integer. Then (ω−rd)m = 1, which implies that g(ω−rd) is an

algebraic integer in Q(ζm,ζp). Thus we can talk about the prime ideal decomposition of

the principal ideal generated by g(ω−rd) in Q(ζm,ζp).

Let

Γ := Gal(Q(ζm,ζp)/Q(ζp)).

For any b coprime to m, we define σb ∈ Γ as

σb : ζm 7→ ζ
b
m, ζp 7→ ζp.

It is well known that the map b 7→ σb from (Z/mZ)∗ to Γ is an isomorphism. The fol-

lowing result gives the prime ideal decomposition of the principal ideal generated by the

Gauss sum g(ω−rd) in Q(ζm,ζp).

Theorem 3.6. For any r ∈Z the prime ideal decomposition of the principal ideal (g(ω−rd))

in Q(ζm,ζp) is given by

(g(ω−rd)) = ∏
t∈(Z/mZ)∗/⟨p⟩

σ
−1
t (Pm)

s(rtd),
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where Pm is the prime ideal of Q(ζm,ζp) lying below P.

Proof. The claim is trivially true when r = 0. To go further we first notice that the only

prime ideals in Q(ζm,ζp) containing g(ω−rd) are those containing p, because for r ̸≡ 0

(mod m), we have

g(ω−rd)g(ω−rd) = |g(ω−rd)|2 = q = p f .

Thus, the only prime ideals that divide (g(ω−rd)) in Q(ζm,ζp) are the prime ideals above

p (equivalently, above p).

By Galois theory, we know that σ
−1
t (Pm), for t ∈ (Z/mZ)∗, are all the primes of Q(ζm,ζp)

lying above p.

By the definition of the Guass sums we have σt(g(ω−rd)) = g(ω−rtd). Therefore,

v
σ
−1
t (Pm)

(g(ω−rd)) = vPm(σt(g(ω−rd)))

= vPm(g(ω
−rtd))

= vP(g(ω−rtd)),

where the second last equality is because the prime P is unramified over the prime Pm.

Thus by the second statement of Theorem 3.5 we have:

v
σ
−1
t (Pm)

(g(ω−rd)) = s(rtd).

Recall that DPm|p = {σ ∈ Γ : σ(Pm) =Pm} is the Decomposition Group of Pm over p.

Since p is unramified in Q(ζm,ζp), DPm|p is a cyclic subgroup of Γ of order f generated

by the Frobenius element σp. This means that the prime ideals of Q(ζm,ζp) above p

are obtained once and only once as σ
−1
t (Pm) for σt ∈ Γ/DPm|p, in other words for t ∈

(Z/mZ)∗/⟨p⟩. Consequently,

(g(ω−rd)) = ∏
t∈(Z/mZ)∗/⟨p⟩

σ
−1
t (Pm)

s(rtd).

■

The restriction homomorphism from Γ to Gal(Q(ζm)/Q) induces an isomorphism from

Γ to Gal(Q(ζm)/Q). We shall denote the image of σt ∈ Γ under this isomorphism by σt .

Let N be the relative ideal norm from Q(ζm,ζp) to Q(ζm). From Proposition 2.23, we
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know that g(ω−rd)m ∈Q(ζm). Since σ(g(ω−rd)m) = g(ω−rd)m for all σ ∈ Γ, we have

N((g(ω−rd)m)) = g(ω−rd)m(p−1)Z[ζm].

We now give the prime ideal decomposition of the principal ideal generated by g(ω−rd)m

in Q(ζm).

Theorem 3.7. For any r ∈Z the prime ideal decomposition of the principal ideal (g(ω−rd)m)

in Q(ζm) is given by

(g(ω−rd)m) = ∏
t∈(Z/mZ)∗/⟨p⟩

σ
−1
t (pm)

m
p−1 ·s(rtd).

Proof. Theorem 3.6 implies

(g(ω−rd)m) = ∏
t∈(Z/mZ)∗/⟨p⟩

σ
−1
t (Pm)

m·s(rtd). (3.10)

The primes σ
−1
t (Pm) are totally ramified in Q(ζm,ζp). It follows that the ramification

index of σ
−1
t (Pm) over pm is equal to the full degree p−1, which in turn implies that the

inertia degree of σ
−1
t (Pm) over pm is equal to 1. Thus,

N(σ−1
t (Pm)) = σ

−1
t (pm).

We take the relative norm on both sides of the equation 3.10 and obtain the following:

g(ω−rd)m(p−1)Z[ζm] = ∏
t∈(Z/mZ)∗/⟨p⟩

σ
−1
t (pm)

m·s(rtd)

= ∏
t∈(Z/mZ)∗/⟨p⟩

σ
−1
t (pm)

m
p−1 (p−1)·s(rtd).

Furthermore, in general, if a and b are two ideals of a number field with the property that

ak = bk, then a= b. Hence, we have

(g(ω−rd)m) = g(ω−d)mZ[ζm] = ∏
t∈(Z/mZ)∗/⟨p⟩

σ
−1
t (pm)

m
p−1 ·s(rtd).

■

Theorem 3.7 is an important result in the theory of cyclotomic fields. It is also the basis for
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the proof of Eisenstein reciprocity (see [18]). In the last century the theory of cyclotomic

fields has been dramatically advanced principally due to the efforts of Iwasawa. In his

work Theorem 3.7 occupies a central position. It has also turned out to be of importance

in arithmetic algebraic geometry.

3.3 Stickelberger’s Element

The results of the last section can be expressed in a much more nice fashion using the

language of group rings. Let G = Gal(Q(ζm)/Q), R = Z[G]. Then the class group Clm is

a Galois module. We treat Clm as an R-module as described in §2.3.1. Any element of G

is of the form σa : ζm 7→ ζ a
m, for some a ∈ (Z/mZ)∗.

Definition 3.8. The Stickelberger element of Q(ζm) is an element of Q[G] defined as

Θ = ∑
a mod m
(a,m)=1

 a

m

σ
−1
a .

Lemma 3.9. 1. For all r ∈ Z we have

s(r) = (p−1) ∑
0≤i< f

 pir

q−1

 .

2. For 0 ≤ r < q−1 we have

t(r)≡ (−p)−vp(r!)r! (mod p).

Proof. (1). Both sides of the formula are periodic of period dividing q−1; hence we may

assume that 0 ≤ r < q−1, so that r = ∑0≤ j< f r j p j with 0 ≤ r j ≤ p−1. For 0 ≤ i ≤ f −1

we have

pir = ∑
0≤ j< f−i−1

r j p j+i + ∑
f−i≤ j< f

r j p j+i

≡ ∑
0≤ j< f−i−1

r j p j+i + ∑
f−i≤ j< f

r j p j+i− f (mod q−1),

hence  pir

q−1

=
1

q−1

 ∑
0≤ j< f−i−1

r j p j+i + ∑
f−i≤ j< f

r j p j+i− f

 .
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It follows that

∑
0≤i< f

 pir

q−1

=
1

q−1 ∑
0≤ j< f

r jA j,

where

A j = ∑
0≤i< f− j−1

p j+i + ∑
f− j≤i< f

p j+i− f = ∑
0≤i< f

pi =
p f −1

p−1
=

q−1

p−1
,

proving (1).

(2) is easily proved by induction on r : it is trivially true for r ≤ 1. Assume r ≥ 2 and that

the formula is true for r−1, and let r = ∑k≤ j≤ f−1 r j p j be the p-adic decomposition of r,

with 0 ≤ r j ≤ p−1 and rk ̸= 0. Since

r−1 = ∑
0≤ j≤k−1

(p−1)p j +(rk −1)pk + ∑
k+1≤ j≤ f−1

r j p j

it follows from Wilson’s theorem that

t(r−1)≡ (−1)k(rk −1)! ∏
k+1≤ j≤ f−1

(r j)! (mod p),

hence that

t(r)≡ (−1)krkt(r−1)≡
r

(−p)vp(r)
t(r−1) (mod p),

where vp(r) is the p-adic valuation of r. The result follows by induction. ■

We have the following restatement of Theorem 3.7.

Theorem 3.10. Let Θ be the Stickelberger element of Q(ζm). Then

(g(ω−d)m) = pmΘ
m .

Proof. Let T be a system of representatives of (Z/mZ)∗/⟨p⟩. From Theorem 3.9, we

have the following prime decomposition:

(g(ω−d)m) = ∏
t∈(Z/mZ)∗/⟨p⟩

σ
−1
t (pm)

m
p−1 ·s(td).
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From Lemma 3.9 we have,

s(td) = (p−1) ∑
0≤i< f

 pit

m

 .

Therefore,

(g(ω−d)m) = pmα
m ,

where

α = ∑
t∈T

∑
0≤i< f

 pit

m

σ
−1
t .

As t varies in T and i ranges from 0 to f − 1 the elements pit modulo m range through

(Z/mZ)∗, so that

α = ∑
t∈(Z/mZ)∗

{t/m}σ
−1
t ′ ,

where t ′ is a representative of the class of t modulo ⟨p⟩. Since the decomposition group

of pm over p is a subgroup generated by σp, it follows that pmα
m = pmΘ

m . ■

Quick recap. Let p be a prime ideal of Q(ζm) which is coprime to m and Θ be the

Stickelberger element of Q(ζm). So far, we have shown that pmΘ is a pricipal ideal in

Q(ζm). This innocent looking result is actually very strong, which we demonstrate below.

Lemma 3.11. Let F be a number field and m be an integral ideal of F. Then every ideal

class of Cl(F) contains an integral ideal prime to m.

Proof. Let a be an ideal of O and let {p1, . . . ,pt} be the set of prime ideals dividing m

which do not divide a. If p divides a then let a(p) be the exponent of p that occurs in the

prime decomposition of a. Choose some

π(p) ∈ pa(p)−pa(p)+1.

By the Chinese Remainder Theorem there exists an α such that

α ≡ π(p) mod pa(p)+1 for p|a,

α ≡ 1 mod pi for i = 1,2, . . . , t.

If p|a, then the above system of congruences implies that the exponent of p that occurs

in the prime decomposition of (α) is equal to a(p), and that pi does not divide (α) for
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i = 1,2, . . . , t.

Thus we can write (α) = ac where c is an ideal coprime to m. This shows that there is

such an ideal, which is coprime to m, in the inverse of the ideal class of a, and because a

was arbitrary we deduce the result. ■

The above lemma implies that the set of prime ideals, coprime to m, completely generates

the ideal class group. Since these prime ideals are annihilated by mΘ, we conclude that

the ideal class group is annihilated by mΘ.

Theorem 3.12. The m-th multiple of the Stickelberger element Θ of Q(ζm) annihilates

the ideal class group Clm of Q(ζm), that is, for any fractional ideal a of Q(ζm) the ideal

amΘ is principal.

Proof. Let a be a fractional ideal of Q(ζm). Then there is α ∈ Q(ζm), such that b = αa

is an integral ideal of Q(ζm) coprime to m. Let pm be a prime of Q(ζm) which divides

b, choose a prime q of Q(ζq−1), such that pm is the unique prime of Q(ζm) lying below

q. Theorem 3.10 implies that pmΘ
m is principal, where Θ is the Stickelberger element of

Q(ζm). By multiplicativity, bmΘ is principal in Q(ζm). ■

3.4 Stickelberger Ideal of Cyclotomic Fields

We retain the notations from the previous sections. In this section, we will define the

Stickelberger ideal of Q(ζm) and show that this ideal annihilates the ideal class group Clm
of Q(ζm).

Definition 3.13. Let Θ be the Stickelberger element of Q(ζm). We define the Stickel-

berger ideal IS of Q(ζm) by

IS := R∩ΘR.

For any b ∈ Z with gcd(b,m) = 1 we define Θb = (b−σb)Θ ∈Q[G]. Then we have

Θb = (b−σb)Θ = ∑
a mod m
(a,m)=1

ba

m

σ
−1
a . (3.11)

This implies that Θb ∈ R and hence Θb ∈ IS.



3.4. STICKELBERGER IDEAL OF CYCLOTOMIC FIELDS 35

Example 3.1. If m = p is an odd prime and b = 2 we have

Θ2 =− ∑
(p+1)/2≤t≤p−1

σ
−1
t .

Proposition 3.14. The Stickelberger ideal IS of Q(ζm) is generated by the Θb as a Z-

module (hence also as an ideal). More precisely, it is generated over Z by Θb for 1 ≤ b ≤
m with gcd(b,m) = 1, and Θm+1.

Proof. By definition an element δ ∈ IS has the form δ = γΘ, where γΘ ∈ R and γ ∈ R.

Let ∑c = ∑ 1≤c≤m
gcd(c,m)=1

. If we write γ = ∑
c

xcσc, where xc ∈ Z, then

γΘ = ∑
a,c

xc

 a

m

σ
−1
ac−1 = ∑

b
dbσ

−1
b .

with

db = ∑
c

xc

{
bc
m

}
.

Since γΘ ∈ R we have db ∈ Z for 1 ≤ b ≤ m with gcd(b,m) = 1, and in particular

d1 = ∑
c

xc

 c

m

= ∑
c

xc
c

m
∈ Z.

We have

mΘ = ((m+1)−σm+1)Θ = Θm+1 ∈ R. (3.12)

Thus

γΘ = ∑
c

xcσcΘ = ∑
c

xc(σc − c)Θ+∑
c

xccΘ

= ∑
c

xc(σc − c)Θ+md1Θ =−∑
c

xcΘc +d1Θm+1,

which proves our claim. ■

Proof of Theorem 1.1. As in the proof of Theorem 3.12, it is sufficient to show that pγ
m is

a principal ideal for any γ ∈ IS and any prime ideal pm coprime to m. Recall from Theorem

3.10 that

(g(ω−d)m) = pmΘ
m ,
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raise both sides to the power b−σb for b coprime to m and obtain

pmΘb
m = (g(ω−d)m(b−σb)) = (αm),

where α = g(ω−d)(b−σb). From Proposition 2.23 α ∈Z[ζm]. Since pΘb
m and (α) are ideals

of Z[ζm] whose m-th powers are equal, by uniqueness of the prime ideal decomposition

in the Dedekind domain Z[ζm] we deduce that they are equal and, in particular, pΘb
m is

a principal ideal. We know, from Proposition 3.14, that Θb generates IS, thus p
γ
m is a

principal ideal for all γ ∈ IS. ■

3.5 Stickelberger Ideal of Abelian Number Fields

In this section we define the Stickelberger element and the Stickelberger ideal of arbitrary

abelian number fields. Let E be an abelian extension of Q, G = Gal(E/Q), and R =Z[G].

Then the class group Cl(E) of E is a Galois module. We treat Cl(E) as a R-module as

described in §2.3.1.

The Kronecker-Weber theorem implies that E ⊂Q(ζm), we call the least such m the con-

ductor of E. Thus, we can realize G as a quotient group of Gal(Q(ζm)/Q) ∼= (Z/mZ)∗.

Any element of Gal(Q(ζm)/Q) is of the form σa : ζm 7→ ζ a
m, for some a ∈ (Z/mZ)∗. In

what follows, we also denote by σa its restriction to E.

Definition 3.15. The Stickelberger element of E is an element of Q[G] defined as

Θ(E) = ∑
a mod m
(a,m)=1

 a

m

σ
−1
a .

Definition 3.16. The Stickelberger ideal IS(E) of E is an ideal of R defined as

IS(E) = R∩Θ(E)R.

We define

Θb(E) := (b−σb)Θ(E),

then Θb(E) ∈ IS(E) (analogous to Equation 3.11). We know from Proposition 3.14 that

the Stickelberger ideal of cyclotomic fields is generated by Θb. However, the analog

of Proposition 3.14 is not true in general for abelian number fields, as suggested by the
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following example.

Example 3.2. Let E =Q(
√

3) =Q(ζ+
12)⊂Q(ζ12), with

Gal(Q(ζ12)/Q) = {σ1,σ5,σ7,σ11},

however, when restricted to E, σ1 = σ11 = 1 and σ5 = σ7 = σ . Therefore, the Stickel-

berger element of E is Θ = 1+σ . Since Θ ∈ Z[G], where G = Gal(E/Q), the Stickel-

berger ideal is equal to I = ΘZ[G]. The ideal generated by (1−σ1 = 0), (5−σ), (7−σ),

and (11−1) is equal to (2,1+σ = Θ), therefore, J in this case is (2Θ,Θ2) = (2Θ) which

is properly contained in I.

We now proceed to give a proof of Stickelberger’s theorem for arbitrary abelian number

fields. For simplicity, let Θ = Θ(E). Let a be an integral ideal of E that is a co-prime to m,

and let aZ[ζm] = ∏i pi be its decomposition into primes in Q(ζm). Then, from Theorem

3.10 we have

(aZ[ζm])
mΘ = ∏

i
pmΘ

i = (∏
i

g(χpi)
m),

with χm
pi
= 1, and we write χpi to indicate that χ depends on pi. Let β ∈ R be such that

βΘ ∈ R. Then

amβΘ = (γβm), where γ = ∏
i

g(χpi) ∈Q(ζPm),

where P = ∏i pi is the product of rational primes lying below pi’s.

Proposition 3.17. Let K be a number field, a ∈ K∗. and n ∈Z. Suppose (a) = an for some

ideal a of K. Then K(a
1
n )/K is unramified outside of the primes dividing n.

Proof. Let α = a
1
n , f (x) = xn −a be the minimal polynomial of α , and L = K(α). Then

|disc( f )|= |NormL/K f ′(α)|= |NormL/K bα
n−1|= nnan−1.

It is well known that a prime in L/K ramifies if and only if it divides |disc( f )|. Therefore,

the only ramified primes in the extension L/K are the factors of n and prime factors of a.

Since (a) is a n-th power of an ideal a, for a prime factor p of a which is relatively prime

to n, we have

Kp(a
1
n ) = Kp(u

1
n ),

for a unit u of the p-adic completion Kp of K.
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Since p ∤ n,

Kp(u
1
n )/Kp

is unramified. To finally conclude that p is unramified in K(a
1
n )/K, we use [15, Theo-

rem 4.8.5], which says that the ramification index of p in K(a
1
n )/K is equal to the ramifi-

cation index of Kp(a
1
n )/Kp.

Since the ramification index of Kp(a
1
n )/Kp is 1, the prime p is unramified in K(a

1
n )/K.

This proves our claim.

■

Since γmβ ∈ Q(ζm), and it is the m-th power of an ideal of Q(ζm), namely aβΘ, from

Proposition 3.17, it follows that the extension

Q(ζm,γ
β )/Q(ζm)

can be ramified only at primes that divide m. But

Q(ζm)⊆Q(ζm,γ
β )⊆Q(ζm,ζP)

which implies that ramification can occur only at the primes dividing P. But gcd(P,m) =

1, thus the extension must be unramified. We need the following lemma which says that

there does not exist a nontrivial unramified subextension between two cyclotomic fields.

Lemma 3.18. Let m,n ≥ 1 be such that m divides n. If Q(ζm)⊆ K ⊆Q(ζn) and K/Q(ζm)

is unramified at all primes, then K =Q(ζm).

Proof. If m = n, then it is trivial. Suppose m ̸= n. Let p be a prime that divides n/m.

Then Q(ζmp)/Q(ζm) is totally ramified at the primes above p. Let F = K ∩Q(ζmp), then

Q(ζm)⊂ F ⊂ K, and since K/Q(ζm) is unramified at primes above p, F/Q(ζm) must also

be unramified at primes above p.

Suppose that F ̸= Q(ζm), we have Q(ζm) ⊂ F ⊂ Q(ζmp). Let P be a prime of Q(ζmp)

above p, p=P∩Q(ζm), and q=P∩F . Then we have e(P|p) = p−1, and e(q|p) = 1,

which implies that e(P|q) = p− 1. But e(P|q) ≤ [Q(ζmp) : F ] < p− 1. Contradiction.

Thus, F =Q(ζm). So [K(ζmp) : Q(ζmp)] = [K : Q(ζm)].

The lift of an unramified extension is still unramified, so now we are in the original situa-

tion, but with mp replacing m. Proceeding in this manner, we find that [K(ζn) : Q(ζn)] =

[K : Q(ζm)]. Since K ⊂Q(ζn), it follows that K =Q(ζm). ■
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Lemma 3.18 implies that Q(ζm,γ
β ) =Q(ζm), i.e., γβ ∈Q(ζm). Therefore aβΘ = (γβ ) is

principal as an ideal of Q(ζm). To show that it is also principal as an ideal of E, we prove

that γβ ∈ E.

Let q be a prime of Q(ζq−1) lying over one of the prime factors pi of a. Recall that χpi a

priori depends on the choice of q, so we write χpi = χq. Let σ ∈ Gal(Q(ζq−1)/Q(ζm)),

then σ induces a natural isomorphism between the following residue fields

Z[ζq−1]/q⋍ Z[ζq−1]/q
σ .

In what follows, we do not distinguish between these two fields, and we denote both of

these fields by Fq.

Let a ∈ Fq, if χq(a) = ζ , then χqσ (a) = ζ σ . Therefore χσ
q = χqσ , but χm

q = 1, which

implies that values of χq are m-th roots of unity. Since σ fixes Q(ζm), we have χσ
q = χq,

so χqσ = χq for σ ∈ Gal(Q(ζq−1)/Q(ζm)). Therefore, χq depends only on pi, thus we

can return to the notation χpi . Similar argument also implies that χσ
pi
= χpσ

i
for σ ∈

Gal(Q(ζm)/E). Let us extend σ to Q(ζm,ζp), by letting σ(ζp) = ζp, where p is the

rational prime lying below pi, then g(χpi)
σ = g(χσ

pi
) = g(χpσ

i
).

For any σ ∈ Gal(Q(ζm)/E), we have aσ = a, i.e., σ permutes the pi’s. Therefore

γ
βσ = ∏

i
g(χpi)

βσ = ∏
i

g(χpσ
i
)β = γ

β .

Since, γβ ∈ Q(ζm), we have γβ ∈ E. So aβΘ is principal in E. We have proved the

following.

Theorem 3.19. Let IS(E) be the Stickelberger ideal of E. Then IS(E) annihilates the ideal

class group Cl(E) of E.

Remark 3. The Stickelberger theorem does not give any information in case of real abelian

number fields. Let E be a real number field of conductor m. Then σa = σ−a, and since

{a/m}+{−a/m}= 1, we have

Θ(E) =
1

2 ∑
a mod m

σa =
φ(m)

2deg(E)
NormE/Q .

Thus a multiple of the norm annihilates the ideal class group of E, which is obviously

true for any number field. This suggests that we can obtain nontrivial results only if we

consider imaginary number fields.
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In [30], Thaine used cyclotomic units to construct annihilators of ideal class groups of

real abelian fields E: let m be the conductor of E, G = Gal(E/Q) its Galois group, put

K =Q(ζm), and let UE be the group of units of E. Let CE be the subgroup of UE consisting

of units of E of the form

±NormK/E

(
∏

a
(ζ a

m −1)ba

)
,

where ba ∈ Z. The subgroup CE is called the group of cyclotomic units (sometimes also

called circular) units of E. Then Thaine proved that for any prime p that does not divide

[E :Q], 2θ kills the p-class group Clp(E) of E whenever θ ∈R kills the p-Sylow subgroup

of UE/CE .

3.6 Some Natural Questions

Example 3.2 suggests that the analog of Proposition 3.14 does not hold in general for

abelian fields which are not cycltomic fields. Therefore, it is natural to ask the following

question.

Question 1. Are there abelian fields E of the conductor m that are not cyclotomic such

that the Stickelberger ideal IS(E) is generated by Θb(E) for 1 ≤ b ≤ m with gcd(b,m) = 1

and Θm+1(E)?

We notice that in Example 3.2 the Stickelberger element of Q(
√

3) has integer coeffi-

cients. Therefore, we ask the following natural question.

Question 2. For what abelian number fields E with Galois group G, the Stickelberger

element Θ(E) ∈ Z[G]?

Example 3.2 suggests that there exist quadratic number fields such that the coefficients of

their Stickelberger element are integers. This property is actually true for a wider class of

abelian number fields, as we shall see now.

First, if E is a cyclotomic field of conductor m, then by the definition of the Stickelberger

element Θ(E) /∈ Z[G]. Therefore, we can only find abelian number fields with such a

property if we consider abelian number fields E of conductor m with E ̸=Q(ζm).

Let us now consider a real quadratic number field E of discriminant d > 0, we know that
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the conductor of E is d. From Remark 3 the Stickelberger element of is given by

Θ(E) =
φ(d)

4
NormK/Q .

Clearly, there are infinitely many real quadratic fields of discriminant d such that 4 divides

φ(d). For example, take E = Q(
√

d), where d = 5m for some m ∈ Z>0, and (5,m) = 1,

then 4|φ(d).

Now consider an imaginary quadratic number field E = Q(
√

d), with discriminant d ̸=
−3,−4,−8. Let G = Gal(E/Q), and R = Z[G]. Recall that f = |d| is the conductor of E,

the field E embeds as a subfield of Q(ζ f ). We have the following natural surjection.

χE : (Z/ fZ)∗ ∼= Gal(Q(ζ f )/Q)↠ G ∼= ⟨±1⟩, (3.13)

where the final equality is the unique isomorphism between cyclic groups of order 2. It is

clear that χE is a character of (Z/ fZ)∗ of the order 2. Set

A = ∑
χE(a)=1

a, B = ∑
χE(b)=−1

b,

then the Stickelberger element Θ := Θ(E) of E is given by

Θ =
1
f
(A+Bσ),

where σ is the non-trivial automorphism of E/Q. The definition of Θ implies that f Θ∈R.

Actually, much more is true; Schmid [23] proved the following.

Theorem 3.20 (Schmid). Let A and B be as above, then f divides A and B unless d =

−3,−4 or −8. Equivalently, the Stickelberger element Θ is an element of Z[G] unless

d =−3,−4 or −8.

This implies that the Stickelberger ideal IS := IS(E) of E is the principal ideal in R gen-

erated by Θ, that is, IS = ΘR. In particular, Θ annihilates the ideal class group of E. We

know that the norm element 1+σ also annihilates the class group of E. In fact, in the

next chapter we show that 1+σ ∈ IS (see Proposition 4.12). Therefore,

±
(

1
f
(A+Bσ)− B

f
(1+σ)

)
=±

(
1
f
(A−B)

)
∈ IS.

If E is an abelian number field, then we know that the class number h(E) annihilates the
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ideal class group of E. Therefore, it is natural to ask the following question.

Question 3. Do there exist abelian number fields E for which h(E) ∈ IS(E)?

Let h := h(E) be the class number of E, then the analytic class number formula for imag-

inary quadratic fields implies that

h =−1
f ∑

a∈(Z/ fZ)∗
χE(a)a =

1
f
(B−A),

therefore, h ∈ IS. If the class number of E is 1, then 1 ∈ IS and IS = R. We are not aware

of any other examples of an abelian number field for which the ideal class number is an

element of the Stickelberger ideal.

We have seen in Remark 3 that the Stickelberger theorem does not give any information on

the annihilators of an ideal class group of real abelian fields. In [30], Thaine constructed

annihilators of the ideal class group of real abelian fields that are clearly different from

those given by the Stickelberger theorem.

Question 4. Let E be an imaginary cyclotomic field. Are there any annihilators of the

ideal class group of E that are different from those given by the Stickelberger theorem?

This question has been answered positively in [20], where the authors have constructed

annihilators of the ideal class group of E that are not contained in the Stickelberger ideal

of E.



Chapter 4

Iwasawa’s Class Number Formula

Let m be any positive integer and G = Gal(Q(ζm)/Q) ∼= (Z/mZ)∗. Let χ be a character

of G, then χ is also a Dirichlet charater of modulus m, we denote by fχ the conductor of

χ . In what follows, we do not distinguish between χ(a) and χ(σa), for any a coprime

to m. Let j = σ−1 ∈ G be the complex conjugation, then χ( j) = χ(−1) can be equal to

1 or −1. We say that χ is even (respectively, odd) if χ( j) = χ(−1) = 1 (respectively, if

χ( j) = χ(−1) =−1).

4.1 Analytic Class Number Formula

In this section we briefly recall the analytic class number formula (for a full discussion,

see Chapter 4 of [32]). We first prove a basic result from the theory of cyclotomic fields.

Proposition 4.1. Let W be the group of roots of unity in Q(ζm) and w = #W. If m is even,

the only roots of unity in K are the m-th roots of unity, so that W ∼= Z/mZ. If m is odd,

the only ones are the 2m-th roots of unity, so that W ∼= Z/2mZ. In particular, w = m if m

is even and w = 2m if m is odd.

Proof. If m is odd, then (−ζm)
(m+1)/2 is a primitive 2m-th root if unity. Therefore,

Q(ζm) = Q(ζ2m). It will, therefore, suffice to establish the statement for m even. Let

α ∈Q(ζm) be primitive k-th root of unity, k ∤ m. Then ζmα is a primitive r-th root unity,

where r = lcm(k,m)> m. Thus Q(ζr)⊆Q(ζm) and

φ(r) = [Q(ζr) : Q]≤ [Q(ζm) : Q] = φ(m),

where φ denotes the Euler phi-funtion. But m is even and m properly divides r implies that

43
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φ(m) properly divides φ(r), so that, in particular, φ(m)< φ(r), which is a contradiction.

Thus, the m-th roots of unity are the only roots of unity in Q(ζm). ■

Lemma 4.2. If α is an algebraic integer all of whose conjugates have absolute value 1,

then α is a root of unity.

Proof. We know that the minimal polynomial of α over Z is

p(x) =
d

∏
i=1

(x−αi),

where d is the degree of α over Q and αi are all the conjugates of α . Then

pn(x) =
d

∏
i=1

(x−α
n
i )

is a polynomial over Z with αn as a root. It also has degree d, and all the roots have

absolute value 1. The coefficients of these polynomials are integers which can be given

bounds depending only on the degree of α over Q. It follows that there are only finitely

many irreducible polynomials which can have a power of α as a root. Therefore there are

only finitely many distinct powers of α . The lemma follows. ■

Proposition 4.3. Let U be the unit group of Q(ζm). Let U+ be the unit group of Q(ζ+
m ),

W be the group of roots of unity in Q(ζm), and Q := [U : WU+] be the Hasse unit index

of Q(ζm). Then Q = 1 if m is a prime power and Q = 2 is m is not a prime power.

Proof. We show that Q ∈ {1,2} and omit the proof of the second statement which is

an easy but a lengthy computation. Let φ : U → W be a group homomorphism defined

by φ(u) = u/u. Let G = Gal(Q(ζm)/Q) and σ ∈ G, then σ(u) = σ(u) (because complex

conjugation commutes with the other elements of the Galois group), we have |σ(φ(u))|=
1 for all σ ∈ G. By Lemma 4.2 φ(u) ∈W .

Let ψ : U →W/W 2 be the map induced by φ . We claim that ker(ψ)=WU+. Let u= ζ u1,

where ζ ∈W and u1 ∈U+. Then

φ(u) = ζ u1/ζ u1 = ζ
2u1/u1,

since u1 ∈U+, u1 = u1. Thus, φ(u) = ζ 2 ∈W 2, so u∈ ker(ψ). Conversely, suppose u∈U

and φ(u) = ζ 2 ∈ W 2. Then u/u = ζ 2, which implies ζ−1u = ζ u. Therefore, u1 = ζ−1u
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is real. It follows that ker(ψ) =WU+. Since [W : W 2] = 2 and [E : ker(ψ)] must divide

[W : W 2], we are done. Note that if φ(U) =W then Q = 2; if φ(U) =W 2 then Q = 1. ■

Let Clm and hm (respectively, Cl+m and h+m) be the ideal class group and the class number

of Q(ζm) (respectively, Q(ζ+
m )). The class number h+m is always a divisor of hm. This

numerical statement has an algebraic underpinning as follows:

Lemma 4.4. The natural map (induced by the inclusion of fields) Cl+m → Clm is injective.

The quotient hm/h+m is the order of the cokernel of this natural map, and therefore an

integer.

Proof. We will show that the kernel of this natural map is trivial. Suppose I is an ideal

of Q(ζ+
m ) which becomes principal when lifted to Q(ζm). We claim that I is principal in

Q(ζ+
m ).

Let I = (α), where α ∈Q(ζm). Since I is real we have

(ᾱ/α) = Ī/I = (1).

Therefore, ᾱ/α is a unit. Also all its conjugates have abosulte value 1. By Lemma 4.2,

ᾱ/α is a root of unity. If m is not a prime power, then Q = 2 and Proposition 4.3 implies

that there is a unit u in Q(ζm) such that

u/ū = ᾱ/α.

This implies that αu is real, i.e., αu ∈ Q(ζ+
m ), and I = (α) = (αu). It follows form

the unique factorization of ideals in Q(ζ+
m ) that I = (αu) in Q(ζ+

m ), so I was originally

principal.

Now suppose m = pn for some positive integer n. Let π = ζm −1. We have π/π̄ =−ζm,

which generates the roots of unity in Q(ζm). Therefore ᾱ/α = (π/π̄)d for some d. Since

the π-adic valuation takes on only even values on Q(ζ+
m ) and since απd and I are real,

d = vπ(απ
d)− vπ(α) = vπ(απ

d)− vπ(I)

is even. Hence ᾱ/α = (−ζm)
d ∈ W 2. In particular, ᾱ/α = ζ/ζ̄ for some root of unity

ζ , and αζ is real. As before, I = (αζ ), so I was originally principal. This completes the

proof. ■
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The quotient hm/h+m is written h−m and is known as minus part of the class number or

simply the minus class number. We now recall the definition of Bernoulli numbers and

some of their properties.

Definition 4.5. The Bernoulli numbers Bn are defined implicitly by the relation

tet

et −1
=

∞

∑
n=0

Bn
tn

n!
.

Some of the initial Bernoulli numbers are: B0 = 1,B1 =
1
2 ,B2 =

1
6 ,B3 = 0,B4 =− 1

30 and

so on.

Proposition 4.6. If n ≥ 3 is an odd integer greater than or equal to 3, then Bn = 0.

Proof. It suffices to show that the formal power series tet

et−1 −
t
2 does not have any odd-

degree terms. Since we have

tet

et −1
− t

2
=

t(et −1+1)
et −1

− t
2
=

t
et −1

+
t
2

and
(−t)e−t

e−t −1
− (−t)

2
=

−t
1− et +

t
2
=

t
et −1

+
t
2
,

tet

et−1 −
t
2 is invariant under the substitution t → −t. This shows that the coefficients of

odd-degree terms are all 0. ■

Definition 4.7. Let χ be a Dirichlet character defined modulo m. Then the generalized

Bernoulli numbers Bn,χ are defined implicitly by the relation

m−1

∑
a=1

χ(a)teat

emt −1
=

∞

∑
n=0

Bn,χ
tn

n!
.

Clearly, Bn,χ = Bn for χ = 1. Table 4.1 contains some Bernoulli numbers Bn,χ for char-

acters χ defined modulo 3 and modulo 4.

For studying generalized Bernoulli numbers, the Bernoulli polynomials are an indispens-

able tool. They are defined by

tetx

et −1
=

∞

∑
n=0

Bn(x)
tn

n!
.
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n 3Bn,χ ( fχ = 3) 2Bn,χ ( fχ = 4)
1 −1 −1
3 2 3
5 −2 ·5 −52

7 2 ·72 7 ·61
9 −2 ·809 −32 ·5 ·277
11 2 ·11 ·1847 11 ·19 ·2659
13 −2 ·7 ·133 ·47 −5 ·132 ·43 ·967
15 2 ·5 ·419 ·16519 3 ·5 ·47 ·4241723

Table 4.1: Bernoulli Numbers

The following propertie of Bernoulli polynomials are easy to verify:

• Bn(x) ∈Q[x];

• Bn(1) = Bn, Bn(1− x) = (−1)nBn(x);

• Bn(x) = ∑
n
i=0
(n

i

)
Bixn−i;

• Bn,χ = 1
m ∑

m−1
a=1 χ(a)Bn

(
a
m

)
.

Since B1(x) = x− 1
2 , the last property immediately implies that

B1,χ =
1
m

m

∑
a=1

(a,m)=1

χ(a)a

for any χ ̸= 1. We have seen that all the Bernoulli numbers with odd indices greater than

1 are 0. For generalized Bernoulli numbers we have the following.

Proposition 4.8. Let χ be a non-trivial character. Then, for any n satisfying (−1)n−1 =

χ(−1), we have Bn,χ = 0. In other words, if χ is an even character, then Bn,χ with odd

indices n are 0; if χ is an odd character, then Bn,χ with even indices n are 0.

Proof. Since χ is non-trivial, we can rewrite the generating function as follows:

m−1

∑
a=1

χ(a)teat

emt −1
=

m−1

∑
a=1

χ(m−a)te(m−a)t

emt −1

= χ(−1)
m−1

∑
a=1

χ(a)te−at

1− e−mt

= χ(−1)
m−1

∑
a=1

χ(a)(−t)ea(−t)

em(−t)−1
.
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It follows immediately from this that the generating function is an even function if χ(−1)=

1, and an odd function if χ(−1) =−1. ■

We now state the analytic class number formula for the minus class number of Q(ζm).

Proposition 4.9. Let Q and w be defined as above. Then

h−m = Qw ∏
χ odd

(
−1

2
B1,χ

)
, (4.1)

where the product extends over the odd Dirichlet characters defined modulo m.

Proof. See [32, Theorem 4.17]. ■

4.2 Z-rank of Stickelberger Ideal

Let m = pn ̸= 2, where p is a prime and n is an arbitrary positive integer. Denote by Θ

the Stickelberger element of Q(ζm), by R the group ring Z[G], and by IS the Stickelberger

ideal of Q(ζm). From Proposition 3.14 it is clear that the Z-rank of IS is bounded above

by φ(m)+1.

Let χ be a character of G, then we can extend χ to Q[G] by linearity: let α = ∑σ∈G xσ σ ∈
Q[G], then χ(α) = ∑σ∈G xσ χ(σ). It follows from the definition of generalized Bernoulli

numbers that χ(Θ) = B1,χ−1 whenever χ is non trivial.

Proposition 4.10. Let χ be a character of G, then χ(Θ)= 0 if and only if χ is a non-trivial

even character.

Proof. We know that the character χ is even (respectively, odd) if and only if χ−1 is even

(respectively, odd). If χ is odd, then Proposition 4.9 implies that χ(θ) = B1,χ−1 ̸= 0. If χ

is a trivial character, then clearly χ(Θ) ̸= 0. If χ is a non-trivial even character, then from

Proposition 4.8 χ(Θ) = B1,χ−1 = 0. ■

Proposition 4.11. The Z-rank of IS is φ(m)
2 +1.

Proof. Let the Z-rank of IS be r, then

IS = R∩ΘR = Zv1 ⊕·· ·⊕Zvr, (4.2)



4.2. Z-RANK OF STICKELBERGER IDEAL 49

for some v1,v2, . . . ,vr ∈ IS. Let (IS) be the ideal in Q[G] generated by IS. Clearly, we have

(IS) = ΘQ[G], and from equation 4.2 we have

ΘQ[G] =Qv1 ⊕·· ·⊕Qvr.

Thus, r is equal to the Q-dimension of the principal ideal ΘQ[G] which is equal to the

number of characters that do not vanish at Θ (by Equation 2.7). From Proposition 4.10

we know that there are exactly φ(m)
2 + 1 characters of G that do not vanish at Θ, which

proves our claim. ■

Proposition 4.12. Let N = ∑σ∈G σ be the norm element of G. Then

N = (1+ j)Θ.

In particular, N is an element of the Stickelberger ideal IS.

Proof. Since j = σ−1 = σm−1, we have

jΘ =
1

m∑aσ
−1
ma−a =

1

m∑aσ
−1
m−a

(1+ jΘ) =
1

m∑(m−a+a)σ−1
m−a = N.

Since N ∈ Z[G], the norm element N ∈ IS. ■

In what follows, we shall be mainly dealing with the ideal (1− j)IS instead of IS.

Proposition 4.13. The Z-rank of (1− j)IS is φ(m)/2.

Proof. We use a similar argument as in the proof of Proposition 4.11. The Z-rank of

(1 − j)IS is equal to the number of characters that do not vanish at (1 − j)Θ. Let χ

be a character of G. If χ( j) = 1, then clearly χ((1− j)Θ) = 0. If χ( j) = −1, then

χ((1− j)Θ) = 2χ(Θ), but χ(Θ) ̸= 0 (by Proposition 4.10). Which implies that only the

characters do not vanish at (1− j)Θ are the odd characters and there are exactly φ(m)/2

odd characters, which proves the claim. ■
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4.3 Plus and Minus Part of IS

Let M be an R-module. Recall that M+ = {x ∈ M : j · x = x} is the plus-part and M− =

{x ∈ M : j · x =−x} is the minus-part of the R-module M.

Proposition 4.14. Let R+ and R− be the plus and minus part of R respectively. Then,

R+ = (1+ j)R, R− = (1− j)R.

Proof. Let α ∈ (1+ j)R, then we can write α = (1+ j)β for some β ∈ R. We have

j ·α = j · (1+ j)β = α.

Conversely, if

α =
m

∑
a=1
p∤a

xaσa ∈ R+

then jα = α . By comparing the coefficients on both sides we have xa = xm−a. If

β =
⌊m/2⌋

∑
a=1
p∤a

xaσa,

then α = (1+ j)β ∈ (1+ j)R. Using a similar argument we can show that R− = (1−
j)R. ■

Let I be any arbitrary ideal of R, then

I+ ⊇ (1+ j)I and I− ⊇ (1− j)I.

This section contains a detailed study of the plus part I+S and the minus part I−S of the

Stickelberger ideal of Q(ζm). We first settle the simple case of plus part of IS.

Proposition 4.15. We have I+S = (1+ j)IS = NZ. In particular, the Z-rank of I+S is 1.

Proof. Since (1+ j)Θ = N, we have NZ ⊆ (1+ j)IS ⊆ I+S , and we have to show that

I+S ⊆ NZ. Moreover, it suffices to verify that I+S ⊆ NQ, because NZ= NQ∩R.

For any α ∈ R+, we have jα = α , which implies (1+ j)α = 2α . We obtain

2I+S = (1+ j)I+S ⊆ (1+ j)IS ⊆ (1+ j)ΘR = NR = NZ.
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(Recall that NR = NZ.) Thus, I+S ⊆ NQ, as wanted. ■

Recall from the proof of Proposition 4.14 that, if

α =
m

∑
a=1
p∤a

xaσa ∈ R+,

then xa = xm−a. Therefore, we can write

α =
⌊m/2⌋

∑
a=1
p∤a

xa(σa +σm−a) ∈ R.

From this we see that the Z-rank of R+ is φ(m)
2 . Similarly, the Z-rank of R− is also φ(m)

2 .

Proposition 4.16. The index [R+ : I+S ] is infinite except when m = 3 or 4, in which case it

is equal to 1.

Proof. If m = 3 or 4, then R+ = I+S = (1+ j)Z. Suppose that m ̸= 3 and 4, then φ(m)/2 >

1, and from Proposition 4.15 we know that Z-rank of I+S is 1, which implies that [R+ : I+S ]

is infinite. ■

The theory of the relative part I−S is much more substantial. We have the following inclu-

sion

R− ⊃ I−S ⊃ (1− j)IS,

and the Z-rank of R− and (1− j)IS is φ(m)/2, so is the ank of I−S . In particular, both the

indices [R− : I−S ] and [I−S : (1− j)IS] are finite.

Define J := {α ∈ R : αΘ ∈ R}, so that IS = JΘ. Let Φ : R → Z/mZ be defined by Φ :

σa 7→ a mod m. Then Φ extends to a surjective ring homomorphism.

Lemma 4.17. The ideal J is the kernel of Φ : R → Z/mZ.

Proof. Let

α =
m

∑
b=1

(m,b)=1

xbσb ∈ R.

Then

mαΘ =
m

∑
a=1

(m,a)=1

m

∑
b=1

(m,b)=1

axbσ
−1
a σb =

m

∑
c=1

(m,c)=1

σc

m

∑
a=1

(a,c)=1

axac.
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If αΘ ∈ R then the coefficient of σ1 in mαΘ is divisible by m and so

m

∑
a=1

(m,a)=1

axa ≡ 0 (mod m)

or equivalently Φ(α) = 0. Conversely, if Φ(α) = 0 then the coefficient of σ1 in αΘ is an

integer. But the coefficient of σc in αΘ is also the coefficient of σ1 in ασ−1
c Θ. But as Φ

is a homomorphism, Φ(α) = 0 implies that Φ(ασ−1
c ) = 0, and so the coefficient of σc in

αΘ is an integer. Hence αΘ ∈ R.

To summarize, αΘ ∈ R if and only if Φ(α) = 0, as required. ■

Corollary 4.18. We have [R : J] = m.

Proof. The claim follows as Φ : R → Z/mZ is surjective and ker(Φ) = J. ■

Let α ∈ (1− j)IS, then α = (1− j)Θβ for some β ∈ J. This β may not be well-defined,

to illustrate this, we note that 1+ j ∈ J and (1− j)Θ(1+ j) = (1− j)Θ(2+ 2 j) = 0.

However, the parity of the weight w(β ) of β is well defined (see Definition 2.3.3).

Proposition 4.19. Let β1,β2 ∈ J be such that

(1− j)Θβ1 = (1− j)Θβ2.

Then

w(β1)≡ w(β2) (mod 2).

Proof. It suffices to show that (1− j)Θβ = 0 implies w(β )≡ 0 (mod 2).

If (1− j)Θβ = 0, then jΘβ = Θβ . This implies Θβ ∈ I+S = NZ, therefore, we can write

Θβ = Nk for some k ∈ Z. Taking weight of both sides, we obtain

w(Θ)w(β ) = w(N)w(k).

It is well known that
m

∑
a=1

(a,m)=1

a =
m ·φ(m)

2
.
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Thus,

w(Θ) =
1

m

m

∑
a=1

(a,m)=1

a =
m ·φ(m)

2m
=

φ(m)

2
.

We also know that w(N) = φ(m). Therefore,

w(β ) = 2w(k),

equivalently, w(β )≡ 0 (mod 2). ■

Definition 4.20. Let α = (1− j)Θβ ∈ (1− j)IS. Then α is called even (respectively, odd)

if w(β ) is even (respectively, odd).

Let I0 = {α ∈ (1− j)IS : α is even} be the subgroup of all even elements of (1− j)IS. We

know that the set of even elements form a subgroup of index 1 or 2.

Proposition 4.21. If m is a odd prime power, then

[(1− j)IS : I0] = 2.

However, if m = 2n for n > 1, then

[(1− j)IS : I0] = 1.

Proof. We know that m ∈ J. If m is an odd prime power, then (1− j)Θm ∈ (1− j)IS is an

odd element of (1− j)IS because w(m) = m is odd.

Suppose m = 2n for n > 1, then we show that (1 − j)IS = I0, which is equivalent to

show that w(β ) ≡ 0 (mod 2) for all β ∈ J. We observe that (∑xbσb)Θ = (∑xbb)Θ for

∑xbσb ∈ R; since the b’s are all odd, we see that

∑xbb ≡ ∑xb = w(∑xbσb) (mod 2).

In particular, the existence of a β ∈ J with odd w(β ) implies that the odd integer w(β )

is in J: but J also contains 2n, and since J is an ideal, it must contain gcd(w(β ),2n) = 1,

that is, J must be equal to R. But this is a contradiction because it woud imply that Θ ∈ R,

which is clearly not true in case of cyclotomic fields. This completes our proof. ■

We now determine the index [I−S : (1− j)IS].
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Proposition 4.22. We have

I−S = {α ∈ IS : w(α) = 0}.

If m is a odd prime power then

[I−S : (i− j)IS] = 2
φ(m)

2 −1.

If m is a power of 2, then

[I−S : (i− j)IS] = 2
φ(m)

2 .

Proof. Clearly, if α ∈ I−S , then w(α) = 0. Conversely, let α ∈ IS be such that w(α) = 0.

We write α = Θβ for some β ∈ J, since w(α) = 0 and w(Θ) ̸= 0, we have w(β ) = 0.

Furthermore,

(1+ j)α = (1+ j)Θβ = Nβ = w(β )N = 0 =⇒ jα =−α,

which implies that α ∈ IS ∩R−, which proves the first claim.

For any α ∈ R−, we have jα =−α , which implies (1− j)α = 2α . Hence for any ideal I

of R, we have 2I− = (1− j)I−. In particular,

2I−S = (1− j)I−S ⊆ (1− j)IS.

As I−S is a free Z-module of rank φ(m)
2 , we get [I−S : 2I−S ] = 2φ(m)/2.

We claim that 2I−S = I0. Clearly, 2I−S ⊆ I0. Conversely, let α = (1− j)Θβ be an even

element and write w(β ) = 2k for some k ∈ Z. Then

α +2kN = (1− j)Θβ +w(β )N

= (1− j)Θβ +βN

= (1− j)Θβ +(1+ j)Θβ

= 2Θβ ,

which implies that α +2kN belongs to 2IS. Hence α itself belongs to 2IS. Since α ∈ R−,

we obtain α ∈ 2I−S . This proves the inclusion I0 ⊆ 2I−S . Hence I0 = 2I−S .

From Proposition 4.21 we know that if m is a power of an odd prime, then [(1− j)IS :

I0] = [(1− j)IS : 2I−S ] = 2, which implies that [I−S : (1− j)IS] = 2
φ(m)

2 −1. However, if m is
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a power of 2, then (1− j)IS = I0, which implies that [I−S : (1− j)IS] = 2
φ(m)

2 .

■

We recall a basic lemma from group theory.

Lemma 4.23. Let B ⊆ A be abelian groups and f : A → A be a group homomorphism.

Then

[A : B] = [ f (A) : f (B)] · [ker( f )+B : B].

Proof. Define

φ : A/B → f (A)/ f (B)

a+B 7→ f (a)+ f (B).

Clearly φ is a surjective homomorphism. We claim that ker(φ) = (ker( f )+B)/B. The

inclusion (ker( f )+B)/B ⊆ ker(φ) is trivial. Let a+B ∈ ker(φ), then

φ(a+B) = f (a)+ f (B) = f (B) =⇒ f (a) ∈ f (B).

Let f (a) = f (b) for some b ∈ B, then f (a− b) = 0, which implies a− b ∈ ker( f ), i.e.,

a ∈ ker( f )+B. The claim follows. ■

Proposition 4.24. We have [R− : (1− j)J] = m. Furthermore, if m is a power of an odd

prime then J− = (1− j)J.

Proof. Applying the previous lemma to the situation A = R, B = J and f = 1− j, we find

[R : J] = [R− : (1− j)J] because the kernel of 1− j : R → R is (1+ j)R ⊆ J. We know

from Corrolary 4.18 that [R : J] = m. Thus [R− : (1− j)J] = m.

Clearly, (1− j)J ⊆ J−. Now suppose that m is a odd prime power. Let α ∈ J− = J∩R−,

then we can write α = (1− j)β for some β ∈ R. Since α ∈ J, we have

0 = Φ(α) = Φ((1− j)β ) = (1−Φ( j))Φ(β ) = 2Φ(β ).

As m is odd, we obtain Φ(β ) = 0 and so β ∈ J. Therefore, α = (1− j)β ∈ (1− j)J. ■
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4.4 Index of the Stickelberger Ideal

Let V be a Q-vector space of finite dimension n. A lattice in V is a free abelian subgroup

of V of rank n. If L is a lattice, then we can write

L = Zu1 ⊕·· ·⊕Zun,

where B = [u1,u2, . . . ,un] is a Q-basis of V .

Definition 4.25. Let B = [u1,u2, . . . ,un] be a Q-basis of V . The lattice generated by B is

the set

L (B) = Zu1 ⊕·· ·⊕Zun.

Proposition 4.26. Let B1 and B2 be two Q-bases of V . Then L (B1) = L (B2) if and

only if there exists a unimodular matrix U (i.e., a square matrix with integer entries and

determinant ±1) such that B1 = B2U.

Proof. First assume B1 = B2U for some unimodular matrix U . Notice that if U is uni-

modular then U−1 is also unimodular. In particular, both U and U−1 are integer matrices,

and B1 = B2U and B2 = B1U−1. It follows that L (B1)⊆ L (B2) and L (B2)⊆ L (B1),

i.e., the two matrices B1 and B2 generate the same lattice.

Now assume B1 and B2 are two bases for the same lattice L (B1) = L (B2). Then, by

definition of lattice, there exist integer square matices U1 and U2 such that B1 = B2U1

and B2 = B1U2. Combining these two equation we get B1 = B1U1U2, or equivalently,

B1(I−U1U2) = O. Since vectors B1 are linearly independent, it must be I−U1U2 = O,

i.e., U1U2 = I. In particular, det(U1) ·det(U2) = det(U1 ·U2) = det(I) = 1. Since matrices

U1 and U2 have integer entries, det(U1),det(U2) ∈ Z, and it must be det(U1) = det(U2) =

±1. ■

Let L =L (B1) and M =L (B2) be two lattices. Let A ∈Qn×n be the base change matirx

from B1 to B2, i.e., B2 = B1A. We define

(L : M) = |det(A)|. (4.3)

Proposition 4.26 implies that (L : M) is independent of the choice of the bases B1 and B2.

The following lemma can be proved easily.

Lemma 4.27. Let L,M, and N be lattices of V . Then
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1. If M ⊆ L, then (L : M) is defined if and only if [L : M] is finite; if this is the case,

(L : M) = [L : M].

2. (L : N) = (L : M)(M : N).

We know that I−S ⊆ R− and the Z-rank of I−S is equal to the Z-rank of R−. Therefore, we

have

[R− : I−S ] = (R− : I−S ).

From Part (2) of Lemma 4.27 we have

[R− : I−S ] = (R− : I−S ) =
(R− : (1− j)J) · ((1− j)J : (1− j)IS)

(I−S : (1− j)IS)
. (4.4)

Similar argument also implies that

(R− : (1− j)J) = [R− : (1− j)J],

(I−S : (1− j)IS) = [I−S : (1− j)IS].

Proposition 4.28. We have

((1− j)J : (1− j)IS) = ∏
χ( j)=−1

B1,χ−1,

where the product is over all the odd characters of G.

Proof. Let V = Q[G]− = (1− j)Q[G] be a Q-vector space of dimension φ(m)
2 , then (1−

j)J and (1− j)IS are lattices in V . Define

f :V →V ;

x 7→ Θx.

Since f ((1− j)J) = (1− j)ΘJ = (1− j)IS, we have

((1− j)J : (1− j)IS) = |det( f )|.

We now compute the determinant of f . To do so we may extend the base field as we please

and choose the most convenient basis. Let us extend the base field to C. The ideal C[G]−

of the group algebra C[G] is the common kernel of the even characters. Thus, according
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to Proposition 2.16 the ideal C[G]− has a C-basis consisting of idempotents εχ , where χ

runs over the odd characters. Now

f (εχ) = Θεχ = χ(Θ)εχ

= B1,χ−1εχ .

Hence

|det( f )|= ∏
χ( j)=−1

B1,χ−1.

■

Theorem 4.29. Let G = Gal(Q(ζm)/Q) and R = Z[G]. Then [R− : I−S ] = h−m .

Proof. From Proposition 4.9 we have

∏
χ( j)=−1

B1,χ−1 =
2

φ(m)
2 ·h−m
Q ·w

,

where Q = 1 (see Proposition 4.3), and w = m if m is even and w = 2m if m is odd (see

Proposition 4.1).

First, assume that m = 2n for n > 1. From Proposition 4.24 we have (R− : (1− j)J) = m,

and from Proposition 4.22 we have (I−S : (1− j)IS) = 2
φ(m)

2 . Therefore,

(R− : I−S ) =
m ·∏χ( j)=−1 B1,χ−1

2
φ(m)

2

=
m ·h−m
Q ·w

. (4.5)

But Q = 1 and w = m. Thus, (R− : I−S ) = h−m .

Now suppose that m is an odd prime power. In this case, from Proposition 4.22 we have

(I−S : (1− j)IS) = 2
φ(m)

2 −1. Therefore,

(R− : I−S ) =
m ·∏χ( j)=−1 B1,χ−1

2
φ(m)

2 −1
=

2m ·h−m
Q ·w

. (4.6)

But Q = 1 and w = 2m. Thus, (R− : I−S ) = h−m . ■

Theorem 4.29 also implies that h−m is an integer: a direct integrality proof for general

abelian extensions was given by Hasse [10].
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Remark 4. Similar class number formula also holds for the plus part when the Stickel-

berger ideal is replaced by cyclotomic units (see [25]). In 1996, Anderson [1] discovered

a unified approach that combined the plus and minus parts.

As an application of Theorem 4.29 we give an algebraic proof of the fact that h−m annihi-

lates the odd part of Cl−m .

Proposition 4.30. Let l be an odd prime and m = ln, for some positive integer n. Let

Cl = Clm be the ideal class group of Q(ζm) and let h = hm be the class number. Then the

minus class number h− = h−m annihilates the minus part of the p-class group of Q(ζm) for

all odd primes p, i.e., h− annihilates Cl−p for all odd primes p.

Proof. We know Cl−p = Cl1− j
p . Since R− = (1− j)R, we have

Cl−p = Cl1− j
p = ClR

−
p .

Let c ∈ Cl−p , then c ∈ ClR
−

p . Since h− = (R− : I−S ), we find that ch− ∈ Cl
I−S
p ⊂ ClI

−
S , but I−S

annihilates Cl as I−S ⊂ IS. Therefore, h− annihilates Cl−p for every odd prime p. ■

The fact that the index [R− : I−S ] coincides with the minus class number h−m = #Cl−m
prompts the question whether there is an isomorphism R−/I−S

∼= Cl−m as abelian groups

(or even as Gal(Q(ζm)/Q)-modules). The answer to both questions is no; see [32, p. 106-

107] and [18, p. 382].

In the next chapter, we present generalizations of Iwasawa’s class number formula to

arbitrary cyclotmic fields. However, the situation is much more complicated; see Sinnott

[25] and Kučera [17].



Chapter 5

Sinnott Ideal of Cycltomic Fields

Let K be an imaginary cyclotomic field. Then there is a unique integer m > 2, m ̸≡ 2

(mod 4), such that K = K, we call m the conductor of K. Let G = Gal(K/Q)∼= (Z/mZ)∗,

and R = Z[G].

In Chapter 3 we have defined the Stickelberger ideal IS of K and proved that IS annihi-

lates the ideal class group of K. In Chapter 4 we considered the minus part I−S of the

Stickelberger ideal IS and proved Iwasawa’s class number formula [R− : I−S ] = h(K)−, in

the special case when m is a power of a prime. A natural question that arises is whether

a generalization of Iwasawa’s theorem to the case of arbitrary cyclotomic fields is possi-

ble. Unfortunately, such a generalization is not possible with our current definition of the

Stickelberger ideal of K.

The obstacle that prevents such a generalization is as follows. When the conductor m is

composite and has at least 2 different prime factors, then the index [R− : I−S ] is not finite

in general. In fact, Kučera [17] proved the following.

Theorem 5.1 (Kučera). Let m = pe1
1 pe2

2 · · · peg
g be such that m ̸≡ 2 (mod 4). Put mi =

m
pei

i

and let si be the order of pi in (Z/miZ)∗. Then the group R−/I−S is finite if and only if si

is even and

p
si
2
i ≡−1 (mod mi),

for each i = 1,2, . . . ,g, or if g = 1.

60
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Example 5.1. Let m = 2332, with p1 = 2 and p2 = 3. Then s1 = 6 and s2 = 2. We have

23 ≡−1 (mod 9),

31 ̸≡ −1 (mod 8).

Theorem 5.1 implies that for Q(ζ72) the index [R− : I−S ] is not finite.

If the index [R− : I−S ] is finite, then Kučera gave the following generalization of Iwasawa’s

class number formula.

Theorem 5.2 (Kucera). If the group R−/I−S is finite, then

[R− : I−S ] = 2b ·h(K)−,

where b = 0 if g = 1 and

b =−1+
g

∑
i=1

φ(mi)

si

if g ≥ 2.

To overcome the obstacle mentioned above, Sinnott considered a new ideal, which we

call the Sinnott ideal1 of K and denote it by S. We are uncertain about the origin of

the definition of the Sinnott ideal, whether it was first defined by Iwasawa or by Sinnott

himself. However, the first mention of this definition in the literature is in Sinnott’s 1978

article [25]. If I−S is replaced by S−, then in [25] it is proved that the index [R− : S−] is

finite for any imaginary cyclotomic field (see Theorem 5.8). However, Sinnott attributes

the proof of this finiteness property mentioned in [25] to Iwasawa.

We give a brief description of the remainder of the chapter. In Section 5.1, we give

an equivalent definition of the Stickelberger ideal, which motivates the definition of the

Sinnott ideal. In Section 5.2, we give Sinnott’s generalization of Iwasawa’s class number

formula and present a brief outline of its proof. In Section 3, we show that the Sinnott

ideal of K annihilates the ideal class group of K.

5.1 Definition of Sinnott Ideal

We now define the Sinnott ideal S of K. The motivation to define the Sinnott ideal comes

from the following proposition, which suggests an equivalent definition of the Stickel-

1Sinnott in [25] calls S the Stickelberger ideal of K. However, to avoid confusion, we call this the Sinnott
ideal of K
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berger ideal. For any integer a, set

Θ(a) := ∑
t mod m
(t,m)=1

−
at

m

σ
−1
t ∈Q[G].

Proposition 5.3. Let I′ be the subgroup of Q[G] generated by the elements Θ(a), for

all a from a complete set of integers coprime to m and distinct modulo m. Then the

Stickelberger ideal IS of K is the intersection of R with I′.

Proof. For any integer a coprime to m we have

Θ(a) = σ−aΘ(−1),

which implies that I′ is an R-module and

I′ = (Θ(−1))R.

We know that Θ(−1) is the Stickelberger element of K, therefore, by definition I′∩R is

the Stickelberger ideal of K. ■

Let S′ be the subgroup of Q[G] generated by the elements Θ(a), for all a from the complete

set of integers distinct modulo m. Note that to define I′ we considered a from the complete

set of integers coprime to m and distinct modulo m.

Definition 5.4 (Sinnott Ideal). The Sinnott ideal S of K is defined as the intersection of S′

and R:

S := S′∩R.

5.2 Sinnott’s Theorem

The following generalization of Iwasawa’s class number formula to arbitrary cyclotomic

fields is due to.

Theorem 5.5 (Sinnott). Let m > 2 be an integer, g be the number of distinct primes that

divide m, and G = Gal(K/Q). Then

[Z[G]− : S−] = 2ah(K)−,
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where a = 0 if g = 1, and

a = 2g−2 −1, if g > 1.

To justify that Sinnott’s theorem 5.5 is indeed a generalization of Iwasawa’s theorem, we

claim that when m is a prime power then the minus part of the Stickelberger and Sinnott

ideal of K coincide: I−S = S−. By definition, Θ(−1) is the Stickelberger element of K,

which implies that I−S ⊆ S−.

However, when m is a prime power, Theorem 1.2 and Theorem 5.5 imply that

[R− : I−S ] = [R− : S−].

As I−S ⊆ S−, we must have I−S = S−.

In fact, Kučera proved that S− = I−S if and only if m is a prime power (see [17, Prop. 4.3]).

If χ is any character of G, then from the isomorphism G ∼= (Z/mZ)∗ it follows that χ is a

Dirichlet character of modulus m (see Section 2.2). We also use the notation χ to denote

the primitive Dirichlet character that induces the Dririchlet character χ .

For any prime p, define

µ p = ∑
χ

χ(p)εχ ,

where χ denotes the complex conjugate of the primitive Dirichlet character associated to

χ , and εχ is the idempotent associated to χ in C[G]:

εχ =
1

#G ∑
σ∈G

χ(σ)σ−1;

here #G denotes the order of G.

Note that µ p actually lies in Q[G] (viewed as subring of C[G]).

For any positive divisor f of m, let H f denote the subgroup of G consisiting of the ele-

ments of σt , with t ≡ 1 (mod f ), (t,m) = 1. Let s(H f ) denote the sum, in C[G], of the

elements of H f . The element s(H f ) obviously lies in R.

Definition 5.6. Define U to be the R-submodule of C[G] generated by the elements

s(H f )∏
p| f

(1−µ p),

as f varies over the divisors of m and the product is taken over the distinct primes p
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dividing f .

Proposition 5.7. U is contained in Q[G], and is isomorphic as an abelian group to Zφ(m).

Proof. See [25, Proposition 2.2]. ■

Let e+ = (1+ j)/2, e− = (1− j)/2. Then the following result was proved by Iwasawa.

Theorem 5.8 (Iwasawa). S− has finite index in R−, and

[R− : S−] = h(K)−(e−R : e−U)/Q,

where Q is the factor appearing in the analytic class number formula (see Theorem 4.9).

We remark that (e−R : e−U) is defined, in the sense of Section 4.4. It follows immediately

from Proposition 5.7 that e−U is finitely generated as an abelian group and that its span

in Q[G] is e−Q[G]. The same statements are obviously true of e−R, hence (e−R : e−U)

is defined. In particular, this implies that [R− : S−] is finite. For the proof of Theorem 5.8

see [25, Theorem 3.1].

The analytic class number formula played a crucial role in Sinnott’s work, as did the Ga-

lois module U introduced by Iwasawa. An important technical advance made by Sinnott

was his determination of the cohomology groups of U with respect to the action of com-

plex conjugation; theses cohomology groups had to be determined in order to compute

the factors of 2 in Sinnott’s index formulas.

Theorem 5.9 (Sinnott). Let g be the number of primes dividing m. Then

(e−R : e−U) =

1 if g = 1,

22g−2
if g > 1.

(5.1)

Proof. See [25, Section 6]. ■

Combining Theorem 5.8 and Theorem 5.9 and using the fact that Q= 1 if g= 1 and Q= 2

if g > 1 (see 4.3), we obtain Theorem 5.5.

5.3 Sinnott Ideal as Annihilators of Class Group

Let p be an integral prime relatively prime to m. Let f be the smallest positive integer

such that p f ≡ 1 (mod m), and q= p f . Let q be a prime ideal in Q(ζq−1) above p, and pm
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be the prime ideal of Q(ζm) below q. Let O =Z[ζm]. We have q= p f =N(pm) = |O/pm|.

Proposition 5.10. We claim that 1,ζm,ζ
2
m, . . . ,ζ

m−1
m ∈ O are distinct modulo pm.

Proof. Observe that

xm −1

x−1
= 1+ x+ · · ·+ xm−1 =

m−1

∏
i=1

(x−ζ
i
m).

Substituting x = 1, we get

m =
m−1

∏
i=1

(1−ζ
i
m).

If ζ i
m ≡ ζ

j
m (mod pm), for some i ̸= j, if j > i, then ζ

j−i
m ≡ 1 (mod pm), so that m ≡ 0

(mod pm), which is a contradiction because pm is relatively prime to m. Thus, 1,ζm,ζ
2
m, . . . ,ζ

m−1
m

are distinct (mod pm). ■

Proposition 5.11. Let α ∈ O , and α /∈ pm. Then there is a unique integer i modulo m

such that

α
(q−1)/m ≡ ζ

i
m (mod pm).

Proof. Since the order of (O/pm)
∗ is q− 1, we have αq−1 ≡ 1 (mod pm). Hence, α

q−1
m

(mod pm) is an m-th root of unity, and the claim follows. ■

For α ∈ O . Define

1. χpm(α) = 0 if α ∈ pm; and

2. if α /∈ pm, χpm(α) is the unique m-th root of unity such that

α
(q−1)/m ≡ χpm(α) (mod pm).

Then χpm is a multiplicative character of order m of Fq = O/pm. Let ψpm be the character

of the additive group of Fq, with values in the group of p-th roots on unity, defined by

ψpm(x) := ζ
Tr(x)
p , x ∈ Fq;

where Tr denote the trace map Fq → Z/pZ.
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Definition 5.12. For any integer a, we define the generalized Gauss sum g(a,pm) by

g(a,pm) :=− ∑
x∈Fq

χpm(x)
a
ψpm(x).

Clearly, g(a,pm) lies in Q(ζm,ζp). We know that σ ∈ Gal(Q(ζm,ζp)/Q(ζm)) is defined

by ζp 7→ ζ t
p, for some integer t prime to p. Then

g(a,pm)
σ =− ∑

x∈Fq

χpm(x)
a
ψpm(x)

σ (5.2)

=− ∑
x∈Fq

χpm(x)
a
ψpm(tx) (5.3)

= χpm(t)
−ag(a,pm). (5.4)

Taking the m-th power of both sides of the above equation we conclude that g(a,pm)
m lies

in Q(ζm) as χm
pm

is the trivial character. Let d = q−1
m . Recall that the Teichmuller character

ω of Fq is the unique character that satisfies

ω(α)≡ α (mod pm).

We have

ω
d(α)≡ α

d (mod pm),

and χpm(α)≡ αd (mod pm). The uniqueness property implies that χpm = ωd . Therefore,

we can write the generalized Gauss sums in terms of ordinary Gauss sums:

g(a,pm) = g(ωad).

For any r ∈ Z, from Theorem 3.7 we have

(g(ω−rd)m) = pθr ,

where

θr =
m

p−1 ∑
t∈(Z/mZ)∗/⟨p⟩

s(rtd)σ−1
t .

Substitute r = −a. Then by using the same argument as in Theorem 3.10, we conclude
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that

θ−a = m · ∑
t mod m
(t,m)=1

−
at

m

σ
−1
t = mΘ(a).

We have thus proved the following proposition.

Proposition 5.13. (g(a,pm)
m) = g(ωad) = p

mΘ(a)
m

If a ≡ 0 (mod m), then Θ(a) = 0. If a ̸≡ 0 (mod m), then using {x}+ {−x} = 1, we

have −Θ(a) = Θ(−a)−N, where N = ∑σ∈G σ . We may write any γ ∈ S′ in the form

γ = ∑
n
i=1 Θ(ai)− rN, with integers n,r,a1, . . . ,an.

Proposition 5.14. Let γ = ∑
n
i=1 Θ(ai)− rN ∈ S′. Then γ ∈ S if and only if ∑

n
i=1 ai ≡ 0

(mod m).

Proof. The coefficient of σ
−1
t in ∑

n
i=1 Θ(ai) is

ct =
n

∑
i=1

−
ait

m

 .

Using the congruence {x} ≡ x (mod Z), we see immediately that ct ∈ Z if and only if

∑−ait
m ∈ Z, equivalently, ∑

n
i=1 ai ≡ 0 (mod m). This proves our claim. ■

We will extend the definition of generalized Gauss sums g(a,pm) as follows, by defining

g(A,a) whenever A is an n-tuple of integers and that a is an integral ideal prime to m in

Q(ζm). This symbol is defined by Definition 5.12 when A is a sequence of a term and a

is a prime ideal; it will be defined in general by the conditions:

g((A,B),a) = g((A),a) ·g((B),a), (5.5)

and

g(A,ab) = g(A,a) ·g(A,b), (5.6)

where A,B are n-tuples of integers and a,b are integral ideals of Q(ζm) relatively prime

to m.

Let A = (a1,a2, . . . ,an) be an n-tuple of integers, and a be an integral ideal relatively

prime to m. Suppose = ∏p p. Then we have

g(A,a) = ∏
p

g(A,p).
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Let pm be a prime of Q(ζm) that divides a, choose a prime q of Q(ζq−1), such that pm is

the prime of Q(ζm) lying below q. From Proposition 5.13 we have:

(g(A,pm)
m) =

n

∏
i=1

g(ai,pm)
m =

n

∏
i=1

p
mΘ(ai)
m = p

m∑i Θ(ai).
m (5.7)

Finally, using Equation 5.6 we have

(g(A,a)m) = am∑i Θ(ai). (5.8)

Let p be the prime of Q below q and |A|= ∑
n
i=1 ai. Let

σ ∈ Gal(Q(ζm,ζp)/Q(ζm))

be defined by ζp 7→ ζ t
p for some t relatively prime to p, then using Equation 5.2 we get

g(A,pm)
σ =

n

∏
i=1

g(ai,pm)
σ =

n

∏
i=1

χpm(t)
−aig(ai,pm) (5.9)

= χpm(t)
−|A|g(A,pm). (5.10)

Theorem 5.15. The Sinnott ideal S of Q(ζm) annihilates the ideal class group Clm of

Q(ζm).

Proof. relatively prime

Since γ a priori is an element of S′, it is of the form γ = ∑
n
i=1 Θ(ai)− rN for integers

r,n,a1, . . . ,an. Let A = (a1, . . . ,an) and |A| = ∑
n
i=1 ai. Then from Proposition 5.14 γ ∈ S

if and ony if |A| ≡ 0 (mod m). From Equation 5.9 we conclude that g(A,a) ∈Q(ζm).

From Equation 5.8 we have (g(A,a)m) = am∑i Θ(ai). Thus

(g(A,a)) = a∑i Θ(ai).

Let N(a)−r = a−rN . Then

(g(A,a)N(a)−r) = a∑i Θ(ai)−rN = aγ .

This proves our claim. ■



5.3. SINNOTT IDEAL AS ANNIHILATORS OF CLASS GROUP 69

We end our thesis by addressing an analogous question to Question 4.

Question 5. Let K = Q(ζm), G = Gal(K/Q), and S be the Sinnott ideal of K. Can we

find α ∈ Z[G]\S, such that α annihilates the ideal class group of K?

This question has been answered positively by Greither and Kucěra in [9]. It turns out

that in several frequently occurring situations there exist annihilators of K that are not

contained in the Sinnott ideal.
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